1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solong [7]
3 years ago
10

Find the absolute extrema of the function over the region R. (In each case, R contains the boundaries.) Use a computer algebra s

ystem to confirm your results. (Order your answers from smallest to largest x, then from smallest to largest y.)
f(x, y) = x2 − 4xy + 5
R = {(x, y): 1 ≤ x ≤ 4, 0 ≤ y ≤ 2}
Mathematics
1 answer:
algol [13]3 years ago
5 0

<em>f(x, y)</em> = <em>x</em> ² - 4<em>xy</em> + 5

has critical points where both partial derivatives vanish:

∂<em>f</em>/∂<em>x</em> = 2<em>x</em> - 4<em>y</em> = 0   ==>   <em>x</em> = 2<em>y</em>

∂<em>f</em>/∂<em>y</em> = -4<em>x</em> = 0   ==>   <em>x</em> = 0   ==>   <em>y</em> = 0

The origin does not lie in the region <em>R</em>, so we can ignore this point.

Now check the boundaries:

• <em>x</em> = 1   ==>   <em>f</em> (1, <em>y</em>) = 6 - 4<em>y</em>

Then

max{<em>f</em> (1, <em>y</em>) | 0 ≤ <em>y</em> ≤ 2} = 6 when <em>y</em> = 0

max{<em>f</em> (1, <em>y</em>) | 0 ≤ <em>y</em> ≤ 2} = -2 when <em>y</em> = 2

• <em>x</em> = 4   ==>   <em>f</em> (4, <em>y</em>) = 12 - 16<em>y</em>

Then

max{<em>f</em> (4, <em>y</em>) | 0 ≤ <em>y</em> ≤ 2} = 12 when <em>y</em> = 0

max{<em>f</em> (4, <em>y</em>) | 0 ≤ <em>y</em> ≤ 2} = -4 when <em>y</em> = 2

• <em>y</em> = 0   ==>   <em>f</em> (<em>x</em>, 0) = <em>x</em> ² + 5

Then

max{<em>f</em> (<em>x</em>, 0) | 1 ≤ <em>x</em> ≤ 4} = 21 when <em>x</em> = 4

min{<em>f</em> (<em>x</em>, 0) | 1 ≤ <em>x</em> ≤ 4} = 6 when <em>x</em> = 1

• <em>y</em> = 2   ==>   <em>f</em> (<em>x</em>, 2) = <em>x</em> ² - 8<em>x</em> + 5 = (<em>x</em> - 4)² - 11

Then

max{<em>f</em> (<em>x</em>, 2) | 1 ≤ <em>x</em> ≤ 4} = -2 when <em>x</em> = 1

min{<em>f</em> (<em>x</em>, 2) | 1 ≤ <em>x</em> ≤ 4} = -11 when <em>x</em> = 4

So to summarize, we found

max{<em>f(x, y)</em> | 1 ≤ <em>x</em> ≤ 4, 0 ≤ <em>y</em> ≤ 2} = 21 at (<em>x</em>, <em>y</em>) = (4, 0)

min{<em>f(x, y)</em> | 1 ≤ <em>x</em> ≤ 4, 0 ≤ <em>y</em> ≤ 2} = -11 at (<em>x</em>, <em>y</em>) = (4, 2)

You might be interested in
What does more than mean in an word problem​
djyliett [7]
You have to add the problem
5 0
3 years ago
Evaluate the following: 3 Squared ÷ (2 + 1). 2 3 4 5
Setler79 [48]
The final anwers is 3.
3 0
3 years ago
Read 2 more answers
Guy what 5x4 please help me
Archy [21]

Answer:

20

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Find the number whose arithmetic square root is 0.6
slavikrds [6]

Answer: 0.36

Step-by-step explanation:

6/10 x 6.10= 36/100

5 0
3 years ago
The largest z-score available in most tables is 2.99, which corresponds to a probability of 99.86%. A fair coin is
lana66690 [7]

Answer:

The number of heads observed is 121.14 heads

Step-by-step explanation:

The formula for the z-score of a proportion is given as follows;

z=\dfrac{\hat{p}-p}{\sqrt{\dfrac{pq}{n}}}

Where:

{\hat{p} = Sample proportion

p = Population success proportion = 0.5

q = 1 - p = 1 - 0.5 = 0.5

n = Number in of observation = 200

z = 2.99

Hence, we have;

z=\dfrac{\hat{p}-0.5}{\sqrt{\dfrac{0.5 \times 0.5}{200}}} = 2.99

Therefore;

{\hat{p}-0.5}{} = 2.99 \times \sqrt{\dfrac{0.5 \times 0.5}{200}} = 2.99 \times\dfrac{\sqrt{2} }{40}

{\hat{p} = 0.6057

Whereby \ \hat p = \dfrac{Number \ of \ heads}{Number \ of \ observation} =  \dfrac{Number \ of \ heads}{200} = 0.6057

∴ The number of heads observed = 200 × 0.6057 = 121.14 heads.

5 0
3 years ago
Other questions:
  • What is the solution to the system of equations. 2x+4y=12. Y=1/4x-3
    5·1 answer
  • The weight of <br> 10,000<br> identical samples of a substance is <br> 1<br> pound.
    9·1 answer
  • Write the solution to the given inequality in interval notation.
    7·1 answer
  • What is the quotient?<br><br> 1060 ÷ 48
    5·1 answer
  • I need help with solving this quadratic equation by factoring. the problem I need help with is number 5.
    9·1 answer
  • What’s the equation for this
    5·2 answers
  • BRAIN TO CORRECT ANSWER!!
    10·2 answers
  • Please help answer I don’t understand
    13·1 answer
  • Plase help I need it​
    7·1 answer
  • Find the greatest common factor (GCF) of 12x and 18x3.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!