Answer:
C is endoplasum, d is ribosomes , e is mitocondia
Explanation:
Answer:
See explanation
Explanation:
We inherit our blood groups from both parents. Our blood type is controlled by a single gene. This gene displays 3 different allelic pairs which must include A, B or O. A child is expected to receive one of the three possible allelic pairs from each of the both parents. This means that there are six possible genotype and four possible phenotype for the child.
Given that Christopher's parents (Andersons) are AB and O,Christopher can have a B blood group.
Given that John's parents (Browns) are A and O, it explains how John can have blood group A.
Given that The Christiansons are A and AB, they can give birth to Robin whose blood group is AB.
Since the Dietrichs are O and O, the only possible blood group of their child is O, hence they are definitely the parents of Jane.
Answer:
An offspring inherits different alleles from each parent.
Explanation:
The phenotype of antenna in crawfish depends on the protein amount in the antenna length. The offspring have different phenotype than their parent because of the amount of protein translated from each parent gene is determining in this.
The gene determines the amount of protein to be present in the antenna to determine its length.
Explanation:
Data given:
Two crawfish parent = medium length antennae, genotyoe Ll
One offspring = short antenna, genotype ll
one offspring = long antennae, genotype LL
The traits in offspring is shown as:
L l
L LL Ll
l Ll ll
The proportion of allele present in the gene determined the length of the antenna in crawfish.
The difference in length of the antenna in crawfish is due to the amount of protein for the phenotype present in the individual. The amount of protein to be expressed in the crawfish is given by both the parents. The tendency of protein expresed define the phenotype of antenna length.
Scientists
can also glimpse the awful effects of Alzheimer's disease when they look at
brain tissue beneath the microscope:
Alzheimer's tissue has numerous fewer nerve
cells and synapses than a well brain.
<span>
<span>Plaques, unusual
clusters of protein particle, which are construct up between nerve cells.</span>
</span>
<span>
<span><span>Dead and dying nerve cells contain tangles,</span> which
are produce of twisted strands of a further protein.</span>
</span>
<span>Scientists
are not absolutely sure what causes cell death and tissue deficiency in the
Alzheimer's brain, but plaques and tangles are key suspects.</span>