Answer:
Step-by-step explanation:
This is a common factor problem.
Pencils come in a pack of 12
Erasers come in a pack of 10
First, break the number into their prime factors(the idea is that we will break the number down into its smallest multiples, which are prime numbers):
10 = 2 * 5
12 = 2 * 2 *3
So now we take the unique multiples of each number, and when we multiply them together, we will get the smallest number that both 10 and 12 can be divided into(this is what the problem is asking for)
We have (2*2*3) that comes from 12, and the only unique number that comes from the 10 is (5)
So now, we multiply:
2*2*3*5=60
However, this isn't exactly out answer. Now we have to divide our answer by the number of each this in the pack to know how many packs to buy.
60/12=5 packs of pencils
60/10= 6 packs of erasers
I hope this helps. Let me know if you have any questions!!
65% of 39 is 60 the answer is 60
Answer:
What I do not understand what you are asking, can you repeat it pls.
Step-by-step explanation:
Answers:
- Discrete
- Continuous
- Discrete
- Continuous
==============================================
Explanations:
- This is discrete because we can't have half a basketball, or any non-whole decimal value to represent the number of basketballs. We can only consider positive whole numbers {1,2,3,4,...}. A discrete set like this has gaps between items. In other words, the midpoint of 2 and 3 (the value 2.5) isn't a valid number of basketballs.
- This is continuous because time values are continuous. We can take any two different markers in time, and find a midpoint between them. For example, the midpoint of 5 minutes and 17 minutes is 11 minutes since (5+17)/2 = 22/2 = 11. Continuous sets like this do not have any gaps between items. We can consider this to be densely packed.
- This is the same as problem 1, so we have another discrete function. You either score a bullseye or you don't. We can't score half a bullseye. The only possible values are {1,2,3,4,...}
- This is similar to problem 2. This function is continuous. Pick any two different positive real numbers to represent the amount of gallons of water. You will always be able to find a midpoint between those values (eg: we can have half a gallon) and such a measurement makes sense.
So in short, always try to ask the question: Can I pick two different values, compute the midpoint, and have that midpoint make sense? If so, then you're dealing with a continuous variable. Otherwise, the data is discrete.