Answer: 3.61×10^5 A
Step-by-step explanation: Since the brain has been modeled as a current carrying loop, we use the formulae for the magnetic field on a current carrying loop to get the current on the hemisphere of the brain.
The formulae is given below as
B = u×Ia²/2(x²+a²)^3/2
Where B = strength of magnetic field on the axis of a circular loop = 4.15T
u = permeability of free space = 1.256×10^-6 mkg/s²A²
I = current on loop =?
a = radius of loop.
Radius of loop is gotten as shown... Radius = diameter /2, but diameter = 65mm hence radius = 32.5mm = 32.5×10^-3 m = 3.25×10^-2m
x = distance of the sensor away from center of loop = 2.10 cm = 0.021m
By substituting the parameters into the formulae, we have that
4.15 = 1.256×10^-6 × I × (3.25×10^-2)²/2{(0.021²) + (3.25×10^-2)²}^3/2
4.15 = 13.2665 × 10^-10 × I/ 2( 0.00149725)^3/2
4.15 = 1.32665 ×10^-9 × I / 2( 0.000058)
4.15 × 2( 0.000058) = 1.32665 ×10^-9 × I
I = 4.15 × 2( 0.000058)/ 1.32665 ×10^-9
I = 4.80×10^-4 / 1.32665 ×10^-9
I = 3.61×10^5 A
Answer:
B. Dan walked uphill, then downhill.
Step-by-step explanation:
The place that the slope went up is based on the distance from the starting point, so the distance is up then down. I hope this helped and please mark me as brainliest!
A) The first one equals to 5
Step by step:
Change all denominators to 28, what you do to the bottom you do to the top.
After adding simplify.
Answer:
Step-by-step explanation:
Rectangle A measures 8 inches by 4 inches. Rectangle B is a scaled copy of Rectangle A. Select all of the measurement pairs that could be the dimensions of Rectangle B.
15 inches by 11 inches
6 inches by 3 inches
18
6 inches by 2 inches
12
16 inches by 8 inches
10 inches by 5 inches
15 inches by 7.5 inches
10 inches by 6 inches