![\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right]](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7BFuture%20Value%20of%20an%20ordinary%20annuity%7D%0A%5C%5C%5C%5C%0AA%3Dpymnt%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7Br%7D%7Bn%7D%20%5Cright%29%5E%7Bnt%7D-1%7D%7B%5Cfrac%7Br%7D%7Bn%7D%7D%20%5Cright%5D)

![\bf A=5280\left[ \cfrac{\left( 1+\frac{0.06}{1} \right)^{1\cdot 4}-1}{\frac{0.06}{1}} \right]](https://tex.z-dn.net/?f=%5Cbf%20A%3D5280%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7B0.06%7D%7B1%7D%20%5Cright%29%5E%7B1%5Ccdot%20%204%7D-1%7D%7B%5Cfrac%7B0.06%7D%7B1%7D%7D%20%5Cright%5D)
Joe is making $485 payments monthly, but the amount gets interest on a yearly basis, not monthly, so the amount that yields interest is 485*12
also, keep in mind, we're assuming is compound interest, as opposed to simple interest
Answer:
a
when you round the number up it becomes 300,000.00
Answer:
x = π/2 + πk
Step-by-step explanation:
cot² x csc² x + 2 csc² x − cot² x = 2
Multiply both sides by sin² x:
cot² x + 2 − cos² x = 2 sin² x
Add cos² x to both sides:
cot² x + 2 = 2 sin² x + cos² x
Pythagorean identity:
cot² x + 2 = sin² x + 1
Subtract 1 from both sides:
cot² x + 1 = sin² x
Pythagorean identity:
csc² x = sin² x
Multiply both sides by sin² x:
1 = sin⁴ x
Take the fourth root:
sin x = ±1
Solve for x:
x = π/2 + 2πk, 3π/2 + 2πk
Which simplifies to:
x = π/2 + πk
\left[x \right] = \left[ \frac{-1}{4}\right][x]=[4−1] = x*3 +3x*2+6) - (9x*2-5x+7