Answer: (3x + 11y)^2
Demonstration:
The polynomial is a perfect square trinomial, because:
1) √ [9x^2] = 3x
2) √121y^2] = 11y
3) 66xy = 2 *(3x)(11y)
Then it is factored as a square binomial, being the factored expression:
[ 3x + 11y]^2
Now you can verify working backwar, i.e expanding the parenthesis.
Remember that the expansion of a square binomial is:
- square of the first term => (3x)^2 = 9x^2
- double product of first term times second term =>2 (3x)(11y) = 66xy
- square of the second term => (11y)^2 = 121y^2
=> [3x + 11y]^2 = 9x^2 + 66xy + 121y^2, which is the original polynomial.
There seems to be a flaw with this question because it says that there are five x-intercepts but the given information only gives you 4 x-intercepts to work with.
Even means the graph is symmetric about the y-axis
The best answer is <span>A.(–6, 0), (–2, 0), and (0, 0)
because you do not have to worry about another point (0,0). Plus we need (-6,0) for it to be symmetric with (6,0).
Consider function f(x) = x²(x-6)(x+6)(x+2)</span>²(x-2)<span>². It is even and fits these conditions as it has x-intercepts at (6,0), (-6,0), (-2,0), (2,0), and (0,0). again, the question does not tell us the fifth x-intercept, so we need to assume that there is another one that needs to be there...and so (-2,0) must have (2,0) for it to be even as well.</span>
Let T be the taco, B the burrito, MP the mexican pizza, R the rice, and N the beans.
For the main course we can have the first three.
----- T
------ B
-------MP
Each main course comes with the two sides. So an R branch and a B branch go to each of the taco, burrito, or pizza.
-----T---------R or N.
We expand it to
--------T-----------R
---------------------N
And we repeat it for the rest.
Thus, the tree diagram is
----- T --------R
-----------------N
-----B---------R
-----------------N
----MP--------R
----------------N
Answer:
24, 14
Step-by-step explanation:
x + y = 38
x = 10 + y
You can substitute (10+y) into the top equation where the x is.
10 + y + y = 38
10 + 2y = 38
2y = 28
y = 14
Now plug 14 in for y in either equation to get x
x = 10 + 14
x = 24