Answer:
The conversion of nitrogen can be carried out through both biological and physical processes. Important processes in the nitrogen cycle include fixation, ammonification, nitrification, and denitrification.
Answer:
Power stroke (myosin head bends) coupled with the release of ADP and phosphate
Explanation:
Muscle contraction results from myosin heads adhering to actin and attracting it inwards. It uses ATP. Myosin adhers to actin at a binding site of its globular actin protein and adheres at another binding site for ATP (hydrolyzed ATP to ADP, Pi and energy)
ATP binding prompts myosin to detach from actin, ATP is changed to ADP and inorganic phosphate, Pi by ATPase. The energy formed at this process orientates myosin head to a “cocked” direction.
The myosin head goes in the direction of the M line, holding the actin with it in the process causing the filaments to orientate nearly 10 nm in the direction of the M line--- power stroke (force is produced), the sarcomere reduces in length and the muscle contracts.
Note: The power stroke is seen when ADP and phosphate disattaches itself from the myosin head.
At the terminal point of the power stroke, the myosin head as low-energy, followed by ADP release.
The attached image shows the cross-bridge muscle contraction cycle, which is activated by Ca2+ sticking to the actin active site. And how actin moves in relation to myosin.
Is this true or false?
If so, this is very true.
Broken circuits can produce a strong electric shock and can be very dangerous.
Answer:
Transparency is the <u><em>opacity of the atmosphere</em></u>, or how clear it is. Moisture and humidity lower the transparency, as does smoke or other kinds of pollution. It’s not entirely unlike light pollution in that it washes out the fainter details of astronomical targets. In fact, poor transparency typically makes light pollution worse because it scatters the light around instead of letting it escape into space away from your cameras and optics.
Transparency usually gets better with altitude, because you're looking through less air. That's why high altitudes are prized for observatories and star parties.
Transparency is also usually very good after a rainstorm has come through to clear all of the particulates out of the air. This is reason number one I figured my second friend had it right at the star party.
Seeing, on the other hand, is a measure of <u><em>atmospheric turbulence</em></u>. We know that if we take a photo of a fast-moving subject, such as at a sporting event, with a low shutter speed, we'll get a blurry image. So what happens when you have to take a very long dark-sky photo and the stars are jumping all about due to atmospheric turbulence? That’s right, blurry stars and deep sky objects.
Seeing is typically better in places where the geography is very flat. The air masses moving over the land encounter few obstacles and flow more smoothly (sometimes called a laminar flow). In Florida, the winds coming over the mountains gets all mixed up like a creek flowing over big boulders, which makes for terrible seeing.
HOPE IT HELPS
It has been repeatedly tested and is widely accepted.