To answer this question, you would divide the total by 3 to find the money that Mo gave. so 280/3= $93.33. I would check my math, just to be safe, however, I hope this helps you out.
Answer:
0.1587
Step-by-step explanation:
Given the following :
Mean (m) of distribution = 64 inches
Standard deviation (sd) of distribution = 2 inches
Probability that a randomly selected woman is taller than 66 inches
For a normal distribution :
Z - score = (x - mean) / standard deviation
Where x = 66
P(X > 66) = P( Z > (66 - 64) / 2)
P(X > 66) = P(Z > (2 /2)
P(X > 66) = P(Z > 1)
P(Z > 1) = 1 - P(Z ≤ 1)
P(Z ≤ 1) = 0.8413 ( from z distribution table)
1 - P(Z ≤ 1) = 1 - 0.8413
= 0.1587
Answer: Complain
Step-by-step explanation:
Gripe- express a complaint or grumble about something, especially something trivial.
Hello there k12 user. - i am in k12 too :)
cough.
use mathpapa look it up it should give your anwser i cant copy and paste it, but its there
just put in the numbers
Answer:
And we can find this probability using the complement rule:
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability using the complement rule:
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.