Answer:
Ron's speed = 3 miles/hour
Stevie's speed = 2.5 miles/hour
On comparing we see Ron is walking faster than Stevie.
Step-by-step explanation:
Given:
Ron takes 10 minutes to walk on a track to cover a distance of 0.5 miles
Stevie takes 6 minutes to walk on a track to cover a distance of 0.25 miles
To find their unit rates in mile per hour and choose the faster one.
Solution:
Unit rate in miles per hour signifies their speeds. Thus, we will find out their speeds.
Ron:
Distance= 0.5 miles
Time = 10 minutes =
hours
Speed =
Stevie
Distance = 0.25 miles
Time = 6 minutes =
hours
Speed = 
Thus, we have
Ron's speed = 3 miles/hour
Stevie's speed = 2.5 miles/hour
On comparing we see Ron is walking faster than Stevie.
Answer:
The correct options are;
1) Write tan(x + y) as sin(x + y) over cos(x + y)
2) Use the sum identity for sine to rewrite the numerator
3) Use the sum identity for cosine to rewrite the denominator
4) Divide both the numerator and denominator by cos(x)·cos(y)
5) Simplify fractions by dividing out common factors or using the tangent quotient identity
Step-by-step explanation:
Given that the required identity is Tangent (x + y) = (tangent (x) + tangent (y))/(1 - tangent(x) × tangent (y)), we have;
tan(x + y) = sin(x + y)/(cos(x + y))
sin(x + y)/(cos(x + y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y)) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
∴ tan(x + y) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
Answer:
ubeovgtnwjggswgtepibvqyytkhfhduygvtqyaccjvgvdbbetedgtdgyegghjgdbecdkbfbgdhebhjegeckgbkhbeiubuvvsakvhfe
Step-by-step explanation:
hrtrrrrrrrrrrrrrrrrhhhhhhrhhhhhhhhhhhhhhhhhhhhhhhhhhhhrhhrhhrrhhhrhhhhh
Answer:
The equation of a right triangle is given by a2 + b2 = c2, where either a or b is the height and base of the triangle and c is the hypotenuse. Using the Pythagorean Theorem, finding the missing side of a triangle is pretty simple and easy. The two special right triangles include: 45°; 45°; 90° Triangle.
a correct answer that guy ☝ is rude can i get brainliest for answering
Step-by-step answer:
Given:
A triangle
Perimeter = 60 cm
longest side = 4* shortest side (x)
Solution:
longest side = 4x
shortest side = x
third (intermediate side = 60 -x -4x = 60-5x
The triangle inequality specifies that the sum of the two shorter sides must be greater than the longest side to form a triangle. Hence
x + y > 4x
x + 60-5x > 4x
60 - 4x > 4x
8x < 60
x < 60/8 = 7.5, or
x < 7.5
Therefore to form a triangle, x (shortest side) must be less than 7.5 cm.
Examine the options: both 7 and 5 are both less than 7.5 cm.
40, 30 and 25 all have a problem because the longest side (4 times longer) will exceed the perimeter of 60.
Now also examine cases where 4x is NOT the longest side, in which case we need
4x>=y
or
4x >= 60-5x
9x >=60
x >= 6.67
so x=5 will not qualify, because 4x will no longer be the longest side.
The only valid option is x=7 cm
The side lengths for x=7 and x=5 are, respectively,
(7, 25, 28)
5, 20, 35 (in which case, the longest side is no longer 4x=20, so eliminated)