Answer:
0.36878
Step-by-step explanation:
Given that:
Mean number of miles (m) = 2135 miles
Variance = 145924
Sample size (n) = 40
Standard deviation (s) = √variance = √145924 = 382
probability that the mean of a sample of 40 cars would differ from the population mean by less than 29 miles
P( 2135 - 29 < z < 2135 + 29)
Z = (x - m) / s /√n
Z = [(2106 - 2135) / 382 / √40] < z < [(2164 - 2135) / 382 / √40]
Z = (- 29 / 60.399503) < z < (29 / 60.399503)
Z = - 0.4801364 < z < 0.4801364
P(Z < - 0.48) = 0.31561
P(Z < - 0.48) = 0.68439
P(- 0.480 < z < 0.480) = 0.68439 - 0.31561 = 0.36878
= 0.36878
The error is that the numbers are not in order from least to greatest.
To find the median of data you need to first put the numbers in order from least to greatest.
Answer:
You can use either of the following to find "a":
- Pythagorean theorem
- Law of Cosines
Step-by-step explanation:
It looks like you have an isosceles trapezoid with one base 12.6 ft and a height of 15 ft.
I find it reasonably convenient to find the length of x using the sine of the 70° angle:
x = (15 ft)/sin(70°)
x ≈ 15.96 ft
That is not what you asked, but this value is sufficiently different from what is marked on your diagram, that I thought it might be helpful.
__
Consider the diagram below. The relation between DE and AE can be written as ...
DE/AE = tan(70°)
AE = DE/tan(70°) = DE·tan(20°)
AE = 15·tan(20°) ≈ 5.459554
Then the length EC is ...
EC = AC - AE
EC = 6.3 - DE·tan(20°) ≈ 0.840446
Now, we can find DC using the Pythagorean theorem:
DC² = DE² + EC²
DC = √(15² +0.840446²) ≈ 15.023527
a ≈ 15.02 ft
_____
You can also make use of the Law of Cosines and the lengths x=AD and AC to find "a". (Do not round intermediate values from calculations.)
DC² = AD² + AC² - 2·AD·AC·cos(A)
a² = x² +6.3² -2·6.3x·cos(70°) ≈ 225.70635
a = √225.70635 ≈ 15.0235 . . . feet
Letter A? I think its letter A cause of the way its written above, I might be wrong but if i'm not let me know, have a great day :)