Answer:
37.7
Step-by-step explanation:
ig
The inverse relation of the function f(x)=1/3x*2-3x+5 is f-1(x) = 9/2 + √(3x + 21/4)
<h3>How to determine the inverse relation?</h3>
The function is given as
f(x)=1/3x^2-3x+5
Start by rewriting the function in vertex form
f(x) = 1/3(x - 9/2)^2 -7/4
Rewrite the function as
y = 1/3(x - 9/2)^2 -7/4
Swap x and y
x = 1/3(y - 9/2)^2 -7/4
Add 7/4 to both sides
x + 7/4= 1/3(y - 9/2)^2
Multiply by 3
3x + 21/4= (y - 9/2)^2
Take the square roots
y - 9/2 = √(3x + 21/4)
This gives
y = 9/2 + √(3x + 21/4)
Hence, the inverse relation of the function f(x)=1/3x*2-3x+5 is f-1(x) = 9/2 + √(3x + 21/4)
Read more about inverse functions at:
brainly.com/question/14391067
#SPJ1
Answer:
Step-by-step explanation:
15 + 720 is 1120
Answer:
See Explanation
Step-by-step explanation:
(a) Proof: Product of two rational numbers
Using direct proofs.
Let the two rational numbers be A and B.
Such that:


The product:




Proved, because 1/3 is rational
(b) Proof: Quotient of a rational number and a non-zero rational number
Using direct proofs.
Let the two rational numbers be A and B.
Such that:


The quotient:

Express as product



Proved, because 3/4 is rational
(c) x + y is rational (missing from the question)
Using direct proofs.
Let x and y be
Such that:


The sum:

Take LCM


Proved, because 7/6 is rational
<em>The above proof works for all values of A, B, x and y; as long as they are rational values</em>