B the angles are complementary
mark this as brainiest answer please
Answer:
Step-by-step explanation:
Cot is the inverse of tan. Therefore, the ratios are also inverses. The same goes for csc, which is the inverse of sin.
The tan ∠B =
so the cot ∠B =
so the first statement is false.
The sin ∠C =
so the csc ∠C =
so the second statement is false.
The tan ∠C =
so the cot ∠C =
so the third statement is false.
The sin ∠B =
so the csc ∠B =
which reduces to
so the last statement is true!
Answer:
(f + g)(x) = 5x + 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 2x - 6
g(x) = 3x + 9
(f + g)(x) is f(x) + g(x)
<u>Step 2: Find</u>
- Substitute in function values: (f + g)(x) = 2x - 6 + 3x + 9
- Combine like terms: (f + g)(x) = 5x + 3
Answer:
Step-by-step explanation:
Is 8ft
Answer:
![m \times H=\left[\begin{array}{c c c}\boxed{-9} & \boxed{36} & \boxed{-\dfrac{9}{2}}\end{array}\right]](https://tex.z-dn.net/?f=m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cboxed%7B-9%7D%20%26%20%5Cboxed%7B36%7D%20%26%20%5Cboxed%7B-%5Cdfrac%7B9%7D%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
<u>Calculate the value of m</u>
Given:
![3\left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]=\dfrac{2}{3}m \times \left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]](https://tex.z-dn.net/?f=3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D%3D%5Cdfrac%7B2%7D%7B3%7Dm%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D)
Therefore:



<u>Calculate the value of H</u>
Given:
![\left(H+ \left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]\right)+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]=\left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]+\left(\left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]\right)](https://tex.z-dn.net/?f=%5Cleft%28H%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%5Cright%29%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%5Cright%29)
Therefore:
![\implies H= \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20H%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />
<u>Calculating m × H</u>
<u />
<u />![\implies m \times H=\dfrac{9}{2} \times \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cdfrac%7B9%7D%7B2%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />![\implies m \times H=\left[\begin{array}{c c c}\dfrac{9}{2}(-2) & \dfrac{9}{2}(8) & \dfrac{9}{2}(-1)\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cdfrac%7B9%7D%7B2%7D%28-2%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%288%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%28-1%29%5Cend%7Barray%7D%5Cright%5D)
<u />