Answer:
150 + 2x
The greatest common factor of 150 and 2x is 2. Factor out a 2 from both terms:
2(75) + 2(x).
Use the Distributive Property, A(B + C) = AB + AC, to rewrite the expression:
2(75 + x).
The expression 150 + 2x is equivalent to 2(75 + x).
Step-by-step explanation:
Might want to change it up a bit bc thats the exact answer. Hope that helps
For the first one, to find x, you are going to take that entire side which would equal to 180 and solve. 2x+20+55=180 would then go down to 2x+65=180 once you add the 20 and 55. Then subtract 65 to both sides and divide your final answer 115/2 which is x=57.5. For the second one it’s 4x-2+21=180, then you will subtract 2 from 21 and get 19. After you would subtract 19 by 180 and divide 4 by each side, getting x=40.25 as your final answer.
Answer:142
Step-by-step explanation:
Simplifying
2x2 + 6x + 4 = 24
Reorder the terms:
4 + 6x + 2x2 = 24
Solving
4 + 6x + 2x2 = 24
Solving for variable 'x'.
Reorder the terms:
4 + -24 + 6x + 2x2 = 24 + -24
Combine like terms: 4 + -24 = -20
-20 + 6x + 2x2 = 24 + -24
Combine like terms: 24 + -24 = 0
-20 + 6x + 2x2 = 0
Factor out the Greatest Common Factor (GCF), '2'.
2(-10 + 3x + x2) = 0
Factor a trinomial.
2((-5 + -1x)(2 + -1x)) = 0
Ignore the factor 2.
Subproblem 1
Set the factor '(-5 + -1x)' equal to zero and attempt to solve:
Simplifying
-5 + -1x = 0
Solving
-5 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '5' to each side of the equation.
-5 + 5 + -1x = 0 + 5
Combine like terms: -5 + 5 = 0
0 + -1x = 0 + 5
-1x = 0 + 5
Combine like terms: 0 + 5 = 5
-1x = 5
Divide each side by '-1'.
x = -5
Simplifying
x = -5