1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katen [24]
3 years ago
9

Solid fats are more likely to raise blood cholesterol levels than liquid fats. Suppose a nutritionist analyzed the percentage of

saturated fat for a sample of 6 brands of stick margarine (solid fat) and for a sample of 6 brands of liquid margarine and obtained the following results: Exam Image Exam Image We want to determine if there a significant difference in the average amount of saturated fat in solid and liquid fats. What is the test statistic
Mathematics
1 answer:
Andrews [41]3 years ago
3 0

Answer:

t = 31.29

Step-by-step explanation:

Given

\begin{array}{ccccccc}{Stick} & {25.8} & {26.9} & {26.2} & {25.3} & {26.7}& {26.1} \ \\ {Liquid} & {16.9} & {17.4} & {16.8} & {16.2} & {17.3}& {16.8} \ \end{array}

Required

Determine the test statistic

Let the dataset of stick be A and Liquid be B.

We start by calculating the mean of each dataset;

\bar x =\frac{\sum x}{n}

n, in both datasets in 6

For A

\bar x_A =\frac{25.8+26.9+26.2+25.3+26.7+26.1}{6}

\bar x_A =\frac{157}{6}

\bar x_A =26.17

For B

\bar x_B =\frac{16.9+17.4+16.8+16.2+17.3+16.8}{6}

\bar x_B =\frac{101.4}{6}

\bar x_B =16.9

Next, calculate the sample standard deviation

This is calculated using:

s = \sqrt{\frac{\sum(x - \bar x)^2}{n-1}}

For A

s_A = \sqrt{\frac{\sum(x - \bar x_A)^2}{n-1}}

s_A = \sqrt{\frac{(25.8-26.17)^2+(26.9-26.17)^2+(26.2-26.17)^2+(25.3-26.17)^2+(26.7-26.17)^2+(26.1-26.17)^2}{6-1}}

s_A = \sqrt{\frac{1.7134}{5}}

s_A = \sqrt{0.34268}

s_A = 0.5854  

For B

s_B = \sqrt{\frac{\sum(x - \bar x_B)^2}{n-1}}

s_B = \sqrt{\frac{(16.9 - 16.9)^2+(17.4- 16.9)^2+(16.8- 16.9)^2+(16.2- 16.9)^2+(17.3- 16.9)^2+(16.8- 16.9)^2}{6-1}}

s_B = \sqrt{\frac{0.92}{5}}

s_B = \sqrt{0.184}

s_B = 0.4290

Calculate the pooled variance

S_p^2 = \frac{(n_A - 1)*s_A^2 + (n_B - 1)*s_B^2}{(n_A+n_B-2)}

S_p^2 = \frac{(6 - 1)*0.5854^2 + (6 - 1)*0.4290^2}{(6+6-2)}

S_p^2 = \frac{2.6336708}{10}

S_p^2 = 0.2634

Lastly, calculate the test statistic using:

t = \frac{(\bar x_A - \bar x_B) - (\mu_A - \mu_B)}{\sqrt{S_p^2/n_A +S_p^2/n_B}}

We set

\mu_A = \mu_B

So, we have:

t = \frac{(\bar x_A - \bar x_B) - (\mu_A - \mu_A)}{\sqrt{S_p^2/n_A +S_p^2/n_B}}

t = \frac{(\bar x_A - \bar x_B) }{\sqrt{S_p^2/n_A +S_p^2/n_B}}

The equation becomes

t = \frac{(26.17 - 16.9) }{\sqrt{0.2634/6 +0.2634/6}}

t = \frac{9.27}{\sqrt{0.0878}}

t = \frac{9.27}{0.2963}

t = 31.29

<em>The test statistic is 31.29</em>

You might be interested in
Any number multiplied by<br> (A) 5<br> (B) 6<br> (C) 7<br> (D) 9<br> has only even products.
yaroslaw [1]

Answer:

c 6

Step-by-step explanation:

6,12,18,24,39,36,42,48

7 0
3 years ago
Read 2 more answers
HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
zavuch27 [327]

Answer:

Step-by-step explanation:

Hey B is the correct answer as the x is negative and y is positive

Hope this helps!!!

3 0
3 years ago
Read 2 more answers
Please HELP!!:) 2. Of the 200 species of birds found in the refuge, 96 have been
dusya [7]

Answer:

48%

Step-by-step explanation:

96 out of the 200 species of birds have been seen nesting. To make it easier, let's make it out of a hundred. Just divide both numbers by 2, this will result in the ratio being 48 out of 100. Now, we have our percentage, 48%.

6 0
3 years ago
Read 2 more answers
Only number 3 not number 4
Nezavi [6.7K]

Answer:

<h2>Yes</h2>

Step-by-step explanation:

He did set a record because 7/20 = 0.35. 11.35 < 11.4 seconds.

<em>PLEASE MARK BRAINLEST</em>

3 0
3 years ago
Would anyone please be able to help me??
Svetllana [295]

Answer:

Area of first shape = 97cm^2

Area of second shape = 506cm^2

Area of third shape =143 cm^2

<em> </em><u><em>First</em><em> </em><em>shape</em><em> </em><em>:</em></u>

<em>i</em><em>.</em><em> </em><em>Area</em><em> </em><em>if</em><em> </em><em>rectangle</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>fig</em><em>.</em><em> </em><em>=</em><em> </em><em>l</em><em>*</em><em>b</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>*</em><em>4</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>4</em><em>8</em><em> </em><em>cm</em><em>^</em><em>2</em>

<em>Now</em><em>,</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>fig</em><em>.</em><em> </em><em>we</em><em> </em><em>construct</em><em> </em><em>a</em><em> </em><em>line</em><em> </em><em>and</em><em> </em><em>make</em><em> </em><em>it</em><em> </em><em>a</em><em> </em><em>square</em><em>,</em><em> </em>

<em>ii</em><em>.</em><em> </em><em> </em><em>Area</em><em> </em><em>of</em><em> </em><em>square</em><em> </em><em>=</em><em> </em><em>s</em><em>*</em><em>s</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>7</em><em>*</em><em>7</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>4</em><em>9</em><em> </em><em>cm</em><em>^</em><em>2</em><em> </em>

<em>Area</em><em> </em><em>of</em><em> </em><em>whole</em><em> </em><em>shape</em><em> </em><em>=</em><em> </em><em>4</em><em>8</em><em>c</em><em>m</em><em>^</em><em>2</em><em> </em><em>+</em><em> </em><em>4</em><em>9</em><em>c</em><em>m</em><em>^</em><em>2</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>9</em><em>7</em><em> </em><em>cm</em><em>^</em><em>2</em>

<u><em>Second</em><em> </em><em>Shape</em><em> </em><em>:</em></u>

<em> </em><em> </em>

<em>i</em><em>.</em><em> </em><em>Area</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>rectangular</em><em> </em><em>shape</em><em>(</em><em>above</em><em> </em><em>one</em><em>)</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>l</em><em>*</em><em>b</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em>9</em><em>*</em><em>1</em><em>4</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em> </em><em>4</em><em>0</em><em>6</em><em> </em><em>cm</em><em>^</em><em>2</em>

<em>ii</em><em>.</em><em> </em><em>Area</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>rectangle</em><em> </em><em>(</em><em>stick</em><em> </em><em>like</em><em> </em><em>shape</em><em>)</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>l</em><em>*</em><em>b</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em>0</em><em>*</em><em>(</em><em>2</em><em>9</em><em>-</em><em>2</em><em>4</em><em>)</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em>0</em><em>*</em><em>5</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>0</em><em> </em><em>cm</em><em>^</em><em>2</em>

<em>Area of whole shape</em><em> </em><em>=</em><em> </em><em>(</em><em>1</em><em>0</em><em>0</em><em> </em><em>+</em><em> </em><em>4</em><em>0</em><em>6</em><em>)</em><em> </em><em>cm</em><em>^</em><em>2</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>5</em><em>0</em><em>6</em><em> </em><em>cm</em><em>^</em><em>2</em>

<u><em>Third</em><em> </em><em>shape</em><em> </em><em>:</em><em> </em></u>

<em>i</em><em>.</em><em> </em><em>Area</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>triangle</em><em> </em><em>=</em><em> </em><em>1</em><em>/</em><em>2</em><em> </em><em>*</em><em>b</em><em>*</em><em> </em><em>h</em>

<em> </em><em>=</em><em> </em><em>1</em><em>/</em><em>2</em><em> </em><em>*</em><em> </em><em>1</em><em>3</em><em> </em><em>*</em><em> </em><em>6</em>

<em> </em><em>=</em><em> </em><em>3</em><em>9</em><em> </em><em>cm</em><em>^</em><em>2</em>

<em>ii</em><em>.</em><em> </em><em>Area</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>square</em><em> </em><em>=</em><em> </em><em>s</em><em>*</em><em>s</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>3</em><em>*</em><em>8</em>

<em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>4</em><em> </em><em>cm</em><em>^</em><em>2</em>

<em>Area</em><em> </em><em>of</em><em> </em><em>whole</em><em> </em><em>shape</em><em> </em><em>=</em><em> </em><em>(</em><em>1</em><em>0</em><em>4</em><em> </em><em>+</em><em> </em><em>3</em><em>9</em><em>)</em><em> </em><em>cm</em><em>^</em><em>2</em>

<em> </em><em>=</em><em> </em><em>1</em><em>4</em><em>3</em><em> </em><em>cm</em><em>^</em><em>2</em>

<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>!</em><em> </em>

4 0
3 years ago
Read 2 more answers
Other questions:
  • Triangle PQR with side p across from angle P, side q across from angle Q, and side r across from angle R
    13·2 answers
  • The function (f) is given by <img src="https://tex.z-dn.net/?f=f%28x%29%3De%5E%28x-11%29%20-8" id="TexFormula1" title="f(x)=e^(x
    8·1 answer
  • I) Find ∠RPU.<br>ii) Find the value of y​
    14·1 answer
  • Divide 63 apples into two groups so the ratio is 2 to 1
    8·1 answer
  • How do I solve this for x?
    13·1 answer
  • Oscar loves cheese burgers. He enters a 24 hour cheese burger eating contest. During the contest Oscar ests a cheese burger ever
    9·1 answer
  • Write an equation, please help
    10·2 answers
  • Simplify: j + 5 + 5c
    13·1 answer
  • What is the period of the parent cosine function, y = cos(x)? degrees What is the period of the cosine function shown in the gra
    10·1 answer
  • If raymond had 50 dogs and gets 80 how many does he have?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!