Answer:
A. Neurotransmitters can act as ligands.
B. Acetylcholine is a neurotransmitter. It can bind to an acetylcholine receptor on the surface of a cell. If this receptor is also a sodium channel, we would call acteylcholine a ligand and its receptor a ligand gated receptor.
Explanation:
Answer:
A. Neurotransmitters can act as ligands.
B. Acetylcholine is a neurotransmitter. It can bind to an acetylcholine receptor on the surface of a cell. If this receptor is also a sodium channel, we would call acteylcholine a ligand and its receptor a ligand gated receptor.
Explanation:
Neurotransmitter are chemicals that transfer signals between neurons and nerve cells. They control some physical and physiologocal activity such as appetite, food.
Acetycoline is an example of neurotransmitter and it is located in the parasympathetic nervous system. Ligand are substance that form complexes with biomolecule. They serve biological purpose with this biomolecule.
This ligand binds to target site. Neurotransmitter act as ligand by binding to receptor in the postsynaptic neuron and acetycoline a type of neurotransmitter can also serve as ligand they bind to acetycoline receptor on cell surface.
Answer:
Answer for question 2:
It is important to receive data from three separate locations because the more we know about the seismic waves and the places that they are more we gain for learning about them.
Explanation:
Answer:
Due to the dense atmosphere
The magnetic field of the earth
Explanation:
Most particles in the solar wind do not reach the earth's surface because the atmosphere is very dense and the protecting magnetic field of the earth.
A solar wind is a burst of energetic particles from the sun which are made up electrons, ions, etc.. They travel at a very high velocity.
- The magnetic field of the earth is able to deflect these charged particles away.
- In areas such as the pole, the interact with the atmosphere to produce very stunning auroras.
Answer: Protons contribute towards making ATP by producing proton-motive force that provides energy for ATP synthesis.
Explanation: In the respiratory chain, the transfer of electrons from one complex to another is accompanied by pumping of protons out of the matrix. This creates a difference in proton concentration and separation of charge across the mitochondrial inner membrane. The electrochemical energy inherent in this difference in proton concentration called proton-motive force is used to drive ATP synthesis as protons flow back passively into the matrix through a proton pore.