Answer:
∠1 = 90°
∠2 = 66°
∠3 = 24°
∠4 = 24°
Step-by-step explanation:
Usually the diagonals of a rhombus bisect each other at right angles.
Thus; ∠1 = 90°
Since they bisect at right angles, then;
∠R1S = 90°
Now, sum of angles in a triangle is 180°
Thus;
66° + 90° + ∠4 = 180°
156 + ∠4 = 180
∠4 = 180 - 156
∠4 = 24°
Now, also in rhombus, diagonals bisect opposite angles.
Thus; ∠4 = ∠3
Thus, ∠3 = 24°
Similarly, the diagonal from R to T bisects both angles into 2 equal parts.
Thus; ∠2 = 66°
Answer:
an exponential
Step-by-step explanation:
just did on edg.
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
<h3>How to determine the maximum height of the ball</h3>
Herein we have a <em>quadratic</em> equation that models the height of a ball in time and the <em>maximum</em> height represents the vertex of the parabola, hence we must use the <em>quadratic</em> formula for the following expression:
- 4.8 · t² + 19.9 · t + (55.3 - h) = 0
The height of the ball is a maximum when the discriminant is equal to zero:
19.9² - 4 · (- 4.8) · (55.3 - h) = 0
396.01 + 19.2 · (55.3 - h) = 0
19.2 · (55.3 - h) = -396.01
55.3 - h = -20.626
h = 55.3 + 20.626
h = 75.926 m
By applying the <em>quadratic</em> formula and discriminant of the <em>quadratic</em> formula, we find that the <em>maximum</em> height of the ball is equal to 75.926 meters.
To learn more on quadratic equations: brainly.com/question/17177510
#SPJ1
The answer to this question is 7
Sq.root of 1240 is approx 35 mm