I believe you need to solve this using the quadratic formula!
To begin, this is what it is:
x= -b ± <span>√ b^2 - 4ac / 2a
Just plug in what you have in your problem...
2 being a, 13 being b, and -24 being c.
So we get:
x= -13 </span>± <span>√13^2 - 4(2)(-24) / 2(2)
x= -13 </span><span>± √169 - 8 (-24) / 4</span>
<span>x= -13 <span>± √169 + 192 / 4</span>
x= -13 </span>± √<span>361 / 4
The square root of 361 is 19.
So you have: -13 </span><span>± 19 / 4.
Here's where you take the equation </span>-13 <span>± 19 and put the addition and subtraction sign to use.
-13 - 19 = -32
and
-13 + 19 = 6
Now all is left to do is divide the two numbers by 4.
-32/4 = -8
and
6/4 = 3/2
x = -8, 3/2</span>
The answer to the question is -50
Although the concept here is physics, the solution is technically just algebra. You have two situations that are related to each other which can be expressed in equation form. Actually, the equation is already given which is <span>7/12 w= 13 5/12. So, basically, all you have to do is solve for w.
Let's simplify 13 5/12 first into an improper fraction.You do this by multiplying the denominator with the whole number and adding to it the numerator. This will be your new numerator, The denominator would still be 12. So, this is equal to (12*13 + 5)/12 = 161/2. Then,
(7/12) w = 161/12
By cross multiplication,
7*12*w = 161*12
w = 161/7 = 23
Therefore, w = 23 pounds which is the weight of the object on Earth.
</span>
For each, you'll use the slope formula
m = (y2-y1)/(x2-x1)
For function f, you'll use the two points (1,6) and (2,12) since x ranges from x = 1 to x = 2 for function f
The slope through these two points is
m = (y2-y1)/(x2-x1)
m = (12-6)/(2-1)
m = 6/1
m = 6
-------------------------------------------
For function g, you'll use (2,4) and (3,20)
The slope through these two points is
m = (y2-y1)/(x2-x1)
m = (20-4)/(3-2)
m = 16/1
m = 16
-------------------------------------------
For function h, you'll use (0,-6) and (2,-18). The y coordinates can be found by plugging in x = 0 and x = 2 respectively into h(x)
The slope through these two points is
m = (y2-y1)/(x2-x1)
m = (-18-(-6))/(2-0)
m = (-18+6)/(2-0)
m = (-12)/(2)
m = -6
-------------------------------------------
The order from left to right is: h, f, g