I'd say centimeters, if that's what you're looking for. Maybe 1-2 cm.
Answer:
7
Step-by-step explanation:
English:
Which digit should go in the box to
make the next number divisible
between 2, 3 and 9? 8 ,? 48
Let x be the number, then the number will look like this:
8x48
This number is already divisible by 2, because it ends with an even number.
Now we need to check for divsibility by 3.
For this to be divisible by 3, the sum of the digit should be a multiple of 3.

We know if a number is divsible by 9, it is also divsible by 3.
So

The least positive solution is



Therefore 8748 is divsible by 2,3, and 9.
Answer with Step-by-step explanation:
We are given that two matrices A and B are square matrices of the same size.
We have to prove that
Tr(C(A+B)=C(Tr(A)+Tr(B))
Where C is constant
We know that tr A=Sum of diagonal elements of A
Therefore,
Tr(A)=Sum of diagonal elements of A
Tr(B)=Sum of diagonal elements of B
C(Tr(A))=
Sum of diagonal elements of A
C(Tr(B))=
Sum of diagonal elements of B

Tr(C(A+B)=Sum of diagonal elements of (C(A+B))
Suppose ,A=![\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
B=![\left[\begin{array}{ccc}1&1\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
Tr(A)=1+1=2
Tr(B)=1+1=2
C(Tr(A)+Tr(B))=C(2+2)=4C
A+B=![\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]+\left[\begin{array}{ccc}1&1\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D)
A+B=![\left[\begin{array}{ccc}2&1\\2&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%261%5C%5C2%262%5Cend%7Barray%7D%5Cright%5D)
C(A+B)=![\left[\begin{array}{ccc}2C&C\\2C&2C\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2C%26C%5C%5C2C%262C%5Cend%7Barray%7D%5Cright%5D)
Tr(C(A+B))=2C+2C=4C
Hence, Tr(C(A+B)=C(Tr(A)+Tr(B))
Hence, proved.
33 rounded to the tens place would be 30.
89 rounded to the tens place would be 90.
Answer:
the third choice. x>_-6
Step-by-step explanation:
1. When you have the square root of (x+6), it shifts the graph 6 units to the left.
2. So the x values would start and include -6 and continue growing to the right.
3. So the domain (x values) of the equation is x is greater than or equal to -6