1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlada-n [284]
3 years ago
5

Can somebody please help me with these questions bc i dont get them

Mathematics
2 answers:
Ksju [112]3 years ago
7 0

Answer:

1) No, the sum isn't equal to 180

2) Yes, the sum is equal to 180

3) No, the sum isn't equal to 180

4) Yes, the sides follow the triangle inequality

5) Yes, the sides follow the triangle inequality

6) Yes, it's an equilateral triangle

Black_prince [1.1K]3 years ago
4 0

Answer:

no...

yes...

no...

no...

yes...

yes...

Step-by-step explanation:

You might be interested in
Pre-Calculus - Systems of Equations with 3 Variables please show work/steps
inessss [21]

Answer:

x = 10 , y = -7 , z = 1

Step-by-step explanation:

Solve the following system:

{x - 3 z = 7 | (equation 1)

2 x + y - 2 z = 11 | (equation 2)

-x - 2 y + 9 z = 13 | (equation 3)

Swap equation 1 with equation 2:

{2 x + y - 2 z = 11 | (equation 1)

x + 0 y - 3 z = 7 | (equation 2)

-x - 2 y + 9 z = 13 | (equation 3)

Subtract 1/2 × (equation 1) from equation 2:

{2 x + y - 2 z = 11 | (equation 1)

0 x - y/2 - 2 z = 3/2 | (equation 2)

-x - 2 y + 9 z = 13 | (equation 3)

Multiply equation 2 by 2:

{2 x + y - 2 z = 11 | (equation 1)

0 x - y - 4 z = 3 | (equation 2)

-x - 2 y + 9 z = 13 | (equation 3)

Add 1/2 × (equation 1) to equation 3:

{2 x + y - 2 z = 11 | (equation 1)

0 x - y - 4 z = 3 | (equation 2)

0 x - (3 y)/2 + 8 z = 37/2 | (equation 3)

Multiply equation 3 by 2:

{2 x + y - 2 z = 11 | (equation 1)

0 x - y - 4 z = 3 | (equation 2)

0 x - 3 y + 16 z = 37 | (equation 3)

Swap equation 2 with equation 3:

{2 x + y - 2 z = 11 | (equation 1)

0 x - 3 y + 16 z = 37 | (equation 2)

0 x - y - 4 z = 3 | (equation 3)

Subtract 1/3 × (equation 2) from equation 3:

{2 x + y - 2 z = 11 | (equation 1)

0 x - 3 y + 16 z = 37 | (equation 2)

0 x+0 y - (28 z)/3 = (-28)/3 | (equation 3)

Multiply equation 3 by -3/28:

{2 x + y - 2 z = 11 | (equation 1)

0 x - 3 y + 16 z = 37 | (equation 2)

0 x+0 y+z = 1 | (equation 3)

Subtract 16 × (equation 3) from equation 2:

{2 x + y - 2 z = 11 | (equation 1)

0 x - 3 y+0 z = 21 | (equation 2)

0 x+0 y+z = 1 | (equation 3)

Divide equation 2 by -3:

{2 x + y - 2 z = 11 | (equation 1)

0 x+y+0 z = -7 | (equation 2)

0 x+0 y+z = 1 | (equation 3)

Subtract equation 2 from equation 1:

{2 x + 0 y - 2 z = 18 | (equation 1)

0 x+y+0 z = -7 | (equation 2)

0 x+0 y+z = 1 | (equation 3)

Add 2 × (equation 3) to equation 1:

{2 x+0 y+0 z = 20 | (equation 1)

0 x+y+0 z = -7 | (equation 2)

0 x+0 y+z = 1 | (equation 3)

Divide equation 1 by 2:

{x+0 y+0 z = 10 | (equation 1)

0 x+y+0 z = -7 | (equation 2)

0 x+0 y+z = 1 | (equation 3)

Collect results:

Answer: {x = 10 , y = -7 , z = 1

3 0
3 years ago
Find the equation of the graphed line.
Kamila [148]

Answer:

y = -x + 4

Step-by-step explanation:

Mathematically, the equation of a straight line is;

y = mx + b

where m is the slope and b is the y-intercept

from the plot, the y intercept is 4

So we have;

y = mx + 4

To get the value of m, we substitute the coordinates of any point and solve for m

we select the point; (4,0)

so;

0 = m(4) + 4

4m = 0-4

4m = -4

m = -1

so the equation of the line is;

y = -x + 4

8 0
3 years ago
Table below shows the age in years and the retail value in thousands of dollars of a random sample of ten automobiles of the sam
horrorfan [7]

Answer:

Step-by-step explanation:

Hello!

Given the study variables

X: Age of an automobile (years)

Y: Retail value of an automobile (thousands of dollars)

a) Construct a scatter diagram.

(attached image)

b) Compute the linear correlation coefficient r. Interpret its value in the context of the problem.

The formula for the correlation coefficient (Person) is:

r= \frac{sum(XY)-\frac{sum(X)*sum(Y)}{n} }{[sum(X^2)-\frac{(sum(X))^2}{n}] * [sum(Y^2)-\frac{(sum(Y))^2}{n} ] }

First you have to do some intermediate summatories:

∑x= 40

∑x²= 174

∑y= 246.30

∑y²= 6154.15

∑xy= 956.5

r= \frac{956.5-\frac{40*246.3}{10} }{[147-\frac{(40)^2}{10}] * [6154.15-\frac{(246.3)^2}{10} ] }

r= -0.818 ≅ 0.82

-0.82 indicates there is a strong negative linear correlation between the age of the automobiles and the retail price. Wich means that the older the car, the less it costs.

c) Compute the least squares regression line. Plot it on the scatter diagram.

Interpret the meaning of the slope of the least-squares regression line in the context of the problem.

The least squares regression line is Y= a + bX

To calculate the regression line you need to calculate the values of "a" and "b"

a= (\frac{sum(Y)}{n} ) -b(\frac{sum(X)}{n} )

a= (\frac{246.3}{10} ) -(-2.05)(\frac{40}{10} )

a= 32.83

b= \frac{sum(XY)-\frac{sum(X)*sum(Y)}{n} }{sum(X^2)-(\frac{sum(X)^2}{n})}

b= \frac{956.5-\frac{40*246.3}{10} }{174-(\frac{40^2}{10})}

b= -2.05

Y= 32.83 - 2.05X

Check attachment for graphic.

-2.05(\frac{years}{thousanfs of dollars}) is the modification of the estimated mean of the retail value of automobiles every time their age increases one year. In other words, every time the automobiles increase their age in one year, the price decreases 2.05 thousands of dollars.

e) Suppose a 20 -year-old automobile of this make and model is selected at random. Use the regression equation to predict its retail value. Interpret the result.

You need to calculate the value of Y for a value of X of 20 years. To do so you replace the values in the regression equation:

Y= 32.83 - 2.05(20)

Y= -8.17 thousands of dollars.

Under the model Y= 32.83 - 2.05X, a 20-year-old automobile has a retail price of -8.17 thousands of dollars.

This is mathematically correct even if it doesn't make sense in context.

f) Comment on the validity of using the regression equation to predict the price of a brand new automobile of this make and model.

You can only use the regression equation to predict possible values of Y for values of X that are between the range of definition of the variable. In this case, the variable is defined in numbers from 2 to 6 years.

You can predict values outside the range of definition of X but the further these values are from the definition range, the less accurate and imprecise the prediction is.

For example in question e) I've predicted the value of Y for X= 20 years, although I've obtained a result truth is that this prediction is not accurate nor reliable.

I hope it helps!

8 0
4 years ago
Choose a number line to model the following situation:
Leno4ka [110]

Answer: A

Step-by-step explanation: because the number line shows a gain of 25 then a loss of 25, it represents the question showing +25 then -25. so the answer is A

Hope this helps

5 0
3 years ago
Read 2 more answers
Ms. Scherbauer and her family go out to dinner and spend $65.20 on their meal. If they want to leave their waitress a 20% tip, h
artcher [175]

Answer:

$78.24

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • What is the slope of the line graphed on the coordinate plane? A graph with a line running through coordinates (0, 6) and coordi
    14·2 answers
  • Identify the independent and dependent variables in the situation. The amount of electricity used for air conditioning in homes
    15·1 answer
  • 130 is 65% of what number?
    15·1 answer
  • Write the equation 5x-2/2-19x+6/2x=3x-2/4 in general quadratic form
    15·1 answer
  • HEEEEEEEEEEEEEEEEEEEEEEEEELP!!!!!!!!!!!!!!
    6·2 answers
  • Pls help asap ill give brainliest
    11·2 answers
  • Find the LCM of the following and with working is important
    10·1 answer
  • Which expression is equivalent to this equation
    13·1 answer
  • Which of the following is an example of a digital asset?
    9·1 answer
  • Help help help help help
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!