Answer: x=27
Step-by-step explanation:
Answer:
No
Step-by-step explanation:
1/2 times 1/2 = 1/4
Answer:
y=ln(x/(1-x))
Step-by-step explanation:
y=e^x/(1+e^x)
Cross multiply
y(1+e^x)=e^x
Distribute
y+ye^x=e^x
Put anything with x on with side and everything without x on opposing side:
y=e^x-ye^x
Factor right hand side
y=(1-y)e^x
Divide both sides by (1-y)
y/(1-y)=e^x
Use natural log.
ln(y/(1-y))=x
The inverse is
y=ln(x/(1-x))
Answer:
8 boards.
Step-by-step explanation:
Since he bought a few of each length. The only combination that works is when he bought 5 of the 4 ft long board so 4×5=20. Than he bought 3 of the 5ft boards 3×5=15. 20+15=35 ft worth of boards.
Consider the charge for parking one car for t hours.
If t is more than 1, then the function is y=3+2(t-1), because 3 $ are payed for the first hour, then for t-1 of the left hours, we pay 2 $.
If t is one, then the rule y=3+2(t-1) still calculates the charge of 3 $, because substituting t with one in the formula yields 3.
75% is 75/100 or 0.75.
For whatever number of hours t, the charge for the first car is 3+2(t-1) $, and whatever that expression is, the price for the second car and third car will be
0.75 times 3+2(t-1). Thus, the charge for the 3 cars is given by:
3+2(t-1)+0.75[3+2(t-1)]+0.75[3+2(t-1)]=3+2(t-1)+<span>0.75 × 2[3 + 2(t − 1)].
Thus, the function which total parking charge of parking 3 cars for t hours is:
</span><span>f(t) = (3 + 2(t − 1)) + 0.75 × 2(3 + 2(t − 1))
Answer: C</span>