E. The cell continued to divide uncontrollably to create more damaged cells.
The answer is ‘Life insurance could be denied’. Publishing DNA results could make public genetic predisposition to diseases such as Huntington's disease, cystic fibrosis, and disorders such as Alzheimer's that are caused by environmental factors influence on the respective genetic mutations. This would cause the life and health insurers to evade such individuals since they are considered a liability. This would deny the individuals the right to health insurance.
<span>The answer is a. carbohydrates. The amount of potential energy in the molecule depends on the number of C-H bonds in the molecule. Carbohydrates have more C-H bonds. Thus, they can serve as energy storage. Other macromolecules have less C-H bonds. Thus, when energy is needed immediately, complex carbohydrates break down to simple carbohydrates and the energy is released.</span>
Answer:
Yes
Explanation:
At room temperature, exposed elemental mercury can evaporate to become an invisible, odorless toxic vapor. ... Elemental mercury is an element that has not reacted with another substance.
Answer:
a Anaphase I
b Metaphase I
c Telophase I
d Anaphase II
e Prophase I
f Telophase II
Explanation:
Prophase I begins after the DNA has been duplicated, as shown in picture e. The chromosomes are condensed, and also visible, which is apparent in picture e.
The next stage is called Metaphase I, in which the pairs of homologous chromosomes align at The the centre of the cell and the spindle fibres attach, as shown in picture b.
The pairs of chromosomes are pulled apart to opposite poles of the cell by the spindle fibres., as shown in picture a. This stage is called Anaphase I.
Then, a process called Telophase I occurs, when the cell divides into two daughter cells. One of these cells is shown in picture c.
Picture d shows the stage Anaphase II, where the spindle has attached and the chromatids are pulled to the opposite poles of the cell.
The final picture left is picture f, which shows the daughter cell at the end of meiosis II, where the nuclear envelope is reforming, as in telophase II.