1/6 yards. All you have to do is add the two upper numbers (numerator) ans then subtract 6/6 - 5/6
11 cubic feet is the answer
Looks like we're given

which in three dimensions could be expressed as

and this has curl

which confirms the two-dimensional curl is 0.
It also looks like the region
is the disk
. Green's theorem says the integral of
along the boundary of
is equal to the integral of the two-dimensional curl of
over the interior of
:

which we know to be 0, since the curl itself is 0. To verify this, we can parameterize the boundary of
by


with
. Then


Answer:
Option A - The distance Train A traveled in 1 h is equal to the distance Train B traveled in 1 h.
Step-by-step explanation:
Given : The distance Train A traveled is modeled by the function 
where d represents distance in miles and t represents time in hours.
To find : How does the distance Train A traveled in 1 hour compare to the distance Train B traveled in 1 hour?
Solution :
Distance traveled by Train A in 1 hour is


Distance traveled by Train B in 1 hour is


or for B, we have 324 miles in 4 hours. If that is at a constant speed, it travels 324/4 = 81 miles in one hour
Therefore, The distance Train A traveled in 1 h is equal to the distance Train B traveled in 1 h.
Hence, Option A is correct.
Answer:
8/17
Step-by-step explanation: