The simplification of the expression (h² + 9·h - 1) × (-4·h + 3), involves the
multiplication of the terms. The error is therefore;
3. Calculating errors when distributing -1
<h3>How can the error in the calculation be found?</h3>
The expansion of (h² + 9·h - 1) × (-4·h + 3), is given as follows;
(h² + 9·h - 1) × (-4·h + 3) = -4·h³ + 3·h² - 36·h² + 27·h + 4·h - 3
Which gives;
-4·h³ - 33·h² + 31·h - 3
The calculation is therefore;
![\begin{array}{|c|c|c|c|}&h^2&+9 \cdot h & -1\\-4 \cdot h&-4\cdot h^3&-36\cdot h^2 &4 \cdot h\\+3& 3 \cdot h^2&27 \cdot h&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7B%7Cc%7Cc%7Cc%7Cc%7C%7D%26h%5E2%26%2B9%20%5Ccdot%20h%20%26%20-1%5C%5C-4%20%5Ccdot%20h%26-4%5Ccdot%20h%5E3%26-36%5Ccdot%20h%5E2%20%264%20%5Ccdot%20h%5C%5C%2B3%26%203%20%5Ccdot%20h%5E2%2627%20%5Ccdot%20h%263%5Cend%7Barray%7D%5Cright%5D)
The error is therefore, in the distribution of the -1
The correct option is;
3. Calculating errors when distributing -1
Learn more about expansion of polynomial expressions here:
brainly.com/question/17255629
Answer:
4×2=8
8×2=16
16×2=32
32×2=<em>6</em><em>4</em>
<em>6</em><em>4</em><em>×</em><em>2</em><em>=</em><em>1</em><em>2</em><em>8</em>
<em>1</em><em>2</em><em>8</em><em>×</em><em>2</em><em>=</em><em>2</em><em>5</em><em>6</em>
<em>I </em><em>HOPE</em><em> THIS</em><em> HELPS</em><em> U</em>
A nonagon has 9 sides. You can remember this by the fact it starts with "N".