1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
6

Just give me the answer. Don’t need explanation... Write an equation of a cosine function with amplitude 3, a period of π, a pha

se shift of π/4 to the left, and translated 1 unit up.
Mathematics
1 answer:
laiz [17]3 years ago
8 0
This can be used y=3x+28y(20^2)
You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Write -9.54 as a fraction in simplest form
sammy [17]

Answer:

-9 \frac{27}{50}

Step-by-step explanation:

6 0
3 years ago
Which inequality is a true statement?
tatiyna

Answer:-4 > -5

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
I am really confused about this question for math.. any help would be really appreciated:
Elina [12.6K]

y= (\frac 1 4 )^x

A reflection about the x axis, about y=0, is the mapping (x',y')=(x,-y) so

y'= -y = - (\frac 1 4)^{x'}

A dilation of 2 is the mapping (x'',y'')=(2x', 2y')

So

x'=x''/2, y'=y''/2

y''/2= - (\frac 1 4)^{x''/2}

y'' =  - 2((\frac 1 4)^{1/2})^{x''}

y''= - 2(\frac 1 2)^{x''}

We can rewrite that without the primes and combine the powers of 2.

y =  - 2^{1-x}

Let's graph these and see if we're close,

Plot y= (1/4)^x, y= - (1/4)^{x}, y = - 2^{1-x}

6 0
3 years ago
A school plays a series of 6 soccer matches. For each match there are 3 possibilities: a win, a draw or a loss. How
Sphinxa [80]

Answer:

There are 729 possible results are there for the series

Step-by-step explanation:

If we have n trials, each with m possible outcomes, the total number of possible outcomes is:

T = m^{n}

In this question:

6 games(trials), so n = 6.

Each with three possible outcomes, so m = 3

Then:

T = 3^{6} = 729

There are 729 possible results are there for the series

7 0
3 years ago
Other questions:
  • Write a number sentence that will calculate a reasonable estimate for the quotient of 3325÷5​
    5·1 answer
  • Help Please.<br><br> Solve the equation. <br> x^2 = -22x - 121
    8·2 answers
  • Angle WDY= 2x-5, angle XDY=52, and angle WDY= 5x-16 what is angle WDY
    13·1 answer
  • Factor Completely: 12x2 − 44x + 24 A) 2(2x − 6)(3x − 2) B) 4(x − 3)(3x − 2) C) 6(x − 4)(2x − 1) D) 12(x − 1)(x − 2)
    13·1 answer
  • -1 + 0 + 1 + ... + 12
    11·1 answer
  • A rectangular pyramid. The rectangular base has a length of 10 centimeters and a width of 2 centimeters. 2 triangular sides have
    14·2 answers
  • An employee worked for 8 hours on 2 days, 6 hours on 1 day, and 4 hours on 2 days. What is the average number of hours the emplo
    10·2 answers
  • What fraction of all the 10-digit numbers with distinct digits have the property that the sum of every pair of neighboring digit
    14·1 answer
  • the endpoints of segment LE are L(-2,2) and F(3,1). the endpoints of segment JR are J(1,-1) and R(2,-3). what is the approximate
    13·2 answers
  • 15 days ago, the share of the Valmont family business was worth $156. Over the next 5 days, the stock value increased by $3 per
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!