Answer:
first option
Step-by-step explanation:
Given
f(x) =
← factorise the numerator
=
← cancel (x + 4) on numerator/ denominator
= 2x - 3
Cancelling (x + 4) creates a discontinuity ( a hole ) at x + 4 = 0, that is
x = - 4
Substitute x = - 4 into the simplified f(x) for y- coordinate
f(- 4) = 2(- 4) - 3 = - 8 - 3 = - 11
The discontinuity occurs at (- 4, - 11 )
To obtain the zero let f(x) = 0, that is
2x - 3 = 0 ⇒ 2x = 3 ⇒ x = 
There is a zero at (
, 0 )
Thus
discontinuity at (- 4, - 11 ), zero at (
, 0 )
Answer:
At (-2,0) gradient is -4 ; At (2,0) gradient is 4
Step-by-step explanation:
For this problem, we simply need to take the derivative of the function and evaluate when y = 0 (when crossing the x-axis).
y = x^2 - 4
y' = 2x
The function y = x^2 - 4 cross the x-axis when:
y = x^2 - 4
0 = x^2 - 4
4 = x^2
2 +/- = x
Hence, this curve crosses the x-axis twice, once at (-2,0) and again at (2,0).
The gradient at these points are as follows:
y' = 2(-2) = -4
y' = 2(2) = 4
Cheers.
Angle sum property = Sum of the three angles of a triangle will be equal to 180° .
Using this let us find out the measure of x .
Measure of first angle = 101°
Measure of second angle = 38°
Measure of third angle = x





Answer:
And rounded up we have that n=2663
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The population proportion have the following distribution
Solution to the problem
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 99% of confidence, our significance level would be given by
and
. And the critical value would be given by:
The margin of error for the proportion interval is given by this formula:
(a)
And on this case we have that
and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
We can assume an estimated proportion of
since we don't have prior info provided. And replacing into equation (b) the values from part a we got:
And rounded up we have that n=2663