Answer:
Step-by-step explanation:
We have total 1200 wildflowers in first year that is first term a is 1200
We have to find sigma notation showing the infinite growth of the wildflowers.
Formula for infinite sum of GP is
Here,
On substituting the values in the formula of sum we get:
On simplification we get:
Therefore, total sum of wildflowers 1600.
Answer:
(2,-2)
Step-by-step explanation:
The first step is to substitute y in the first equation with the right side of the second equation because they both equal to y.
-3x+4 = 4x-10
-3x-4x+4-4 = 4x-4x-10-4
-7x = -14
-7x/-7 = -14/-7
x = 2
Plugin 2 for x for either equation to solve for y, I'll be using the second equation, but either one is fine.
y = 4(2)-10
y = 8-10
y = -2
Plugin x = 2 and y = -2 into (x,y), and you get (2,-2)
We have that
smaller figure
ha=8.7
ra=1.6
larger figure
hb=10.44
rb=1.92
ha/hb=8.7/10.44----> 0.83
ra/rb=1.6/1.92-------> 0.83
ratio smaller figure to the larger figure
1.6/1.92-------> divided by 1.6 both members[1.6/1.6]/[1.92/1.6]-------> 1/1.2
the ratio ha/hb is equal to the ratio ra/rb
so
the smaller figure and the larger figure are similar
and
the ratio smaller figure to the larger figure is equal to----> 1/1.2
the answer is
the option yes 1/1.2
Answer:
11.7
Step-by-step explanation:
Answer:
1/3??? im probably wrong but i would answer it like this.
Step-by-step explanation: