Solution. To check whether the vectors are linearly independent, we must answer the following question: if a linear combination of the vectors is the zero vector, is it necessarily true that all the coefficients are zeros?
Suppose that
x 1 ⃗v 1 + x 2 ⃗v 2 + x 3 ( ⃗v 1 + ⃗v 2 + ⃗v 3 ) = ⃗0
(a linear combination of the vectors is the zero vector). Is it necessarily true that x1 =x2 =x3 =0?
We have
x1⃗v1 + x2⃗v2 + x3(⃗v1 + ⃗v2 + ⃗v3) = x1⃗v1 + x2⃗v2 + x3⃗v1 + x3⃗v2 + x3⃗v3
=(x1 + x3)⃗v1 + (x2 + x3)⃗v2 + x3⃗v3 = ⃗0.
Since ⃗v1, ⃗v2, and ⃗v3 are linearly independent, we must have the coeffi-
cients of the linear combination equal to 0, that is, we must have
x1 + x3 = 0 x2 + x3 = 0 ,
x3 = 0
from which it follows that we must have x1 = x2 = x3 = 0. Hence the
vectors ⃗v1, ⃗v2, and ⃗v1 + ⃗v2 + ⃗v3 are linearly independent.
Answer. The vectors ⃗v1, ⃗v2, and ⃗v1 + ⃗v2 + ⃗v3 are linearly independent.
The answer is "Sunk Cost."
Technology/productivity
Taxes/subsidies
Price expectations
Number of competitors
Input costs
<h3>Please mark me as Brainliest ......</h3>
<span>Across nearly seven million years, the human brain has tripled in size, with most of this growth occurring in the past two million years.</span>