Using equations of linear model function, the number of hours Jeremy wants to skate is calculated as 3.
<h3>How to Write the Equation of a Linear Model Function?</h3>
The equation that can represent a linear model function is, y = mx + b, where m is the unit rate and b is the initial value.
Equation for Rink A:
Unit rate (m) = (35 - 19)/(5 - 1) = 16/4 = 4
Substitute (x, y) = (1, 19) and m = 4 into y = mx + b to find b:
19 = 4(1) + b
19 - 4 = b
b = 15
Substitute m = 4 and b = 15 into y = mx + b:
y = 4x + 15 [equation for Rink A]
Equation for Rink B:
Unit rate (m) = (39 - 15)/(5 - 1) = 24/4 = 6
Substitute (x, y) = (1, 15) and m = 6 into y = mx + b to find b:
15 = 6(1) + b
15 - 6 = b
b = 9
Substitute m = 6 and b = 9 into y = mx + b:
y = 6x + 9 [equation for Rink B]
To find how many hours (x) both would cost the same (y), make both equation equal to each other
4x + 15 = 6x + 9
4x - 6x = -15 + 9
-2x = -6
x = 3
The hours Jeremy wants to skate is 3.
Learn more about linear model function on:
brainly.com/question/15602982
#SPJ1
The answer to this question will be A
Answer:
4
Step-by-step explanation:
Multiply both sides by -3 to get rid of the negative and the fraction.
X - 3 = 21
Move the constants over to isolate the variable
X = 24
Answer:
(x+5) (x=3)
(X+5) (x+1)
Step-by-step explanation:
A removeable discontinuity is always found in the denominator of a rational function and is one that can be reduced away with an identical term in the numerator. It is still, however, a problem because it causes the denominator to equal 0 if filled in with the necessary value of x. In my function above, the terms (x + 5) in the numerator and denominator can cancel each other out, leaving a hole in your graph at -5 since x doesn't exist at -5, but the x + 1 doesn't have anything to cancel out with, so this will present as a vertical asymptote in your graph at x = -1, a nonremoveable discontinuity.