1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
8

3. 1 + sec2x sin2x = sec2x

Mathematics
1 answer:
IgorLugansk [536]3 years ago
7 0

Answer:

Answer is on pic

Step-by-step explanation:

I hope it's helpful!

You might be interested in
EXAMPLE 2 Prove that 9ex is equal to the sum of its Maclaurin series. SOLUTION If f(x) = 9ex, then f (n + 1)(x) = for all n. If
amm1812

Answer:

To Prove: 9e^x is equal to the sum of its Maclaurin series.

Step-by-step explanation:

If f(x) = 9e^x, then f ^{(n + 1)(x)} =9e^x for all n. If d is any positive number and   |x| ≤ d, then |f^{(n + 1)(x)}| = 9e^x\leq  9e^d.

So Taylor's Inequality, with a = 0 and M = 9e^d, says that |R_n(x)| \leq \dfrac{9e^d}{(n+1)!} |x|^{n + 1} \:for\: |x| \leq  d.

Notice that the same constant M = 9e^d works for every value of n.

But, since lim_{n\to\infty}\dfrac{x^n}{n!} =0 $ for every real number x$,

We have lim_{n\to\infty} \dfrac{9e^d}{(n+1)!} |x|^{n + 1} =9e^d lim_{n\to\infty} \dfrac{|x|^{n + 1}}{(n+1)!} =0

It follows from the Squeeze Theorem that lim_{n\to\infty} |R_n(x)|=0 and therefore lim_{n\to\infty} R_n(x)=0 for all values of x.

THEOREM\\If f(x)=T_n(x)+R_n(x), $where $T_n $is the nth degree Taylor Polynomial of f at a and  $ lim_{n\to\infty} R_n(x)=0 \:  for \: |x-a|

By this theorem above, 9e^x is equal to the sum of its Maclaurin series, that is,

9e^x=\sum_{n=0}^{\infty}\frac{9x^n}{n!}  for all x.

6 0
3 years ago
LL
Sonbull [250]

Answer:

x=\boxed{6.6}

\overline{\sf DE}=\boxed{13.2}\:\:\sf units

Step-by-step explanation:

<u>Geometric Mean Theorem - Altitude Rule</u>

The <u>altitude</u> drawn from the vertex of the right angle perpendicular to the hypotenuse separates the <u>hypotenuse</u> into <u>two segments</u>.  The ratio of one segment to the altitude is equal to the ratio of the altitude to the other segment:

\sf \dfrac{segment\:1}{altitude}=\dfrac{altitude}{segment\:2}

From inspection of the given diagram:

  • altitude = FD = 9
  • segment 1 = CD = 5
  • segment 2 = DE = 2x+3

\begin{aligned}\sf \dfrac{segment\:1}{altitude} & = \sf \dfrac{altitude}{segment\:2}\\\\\implies \dfrac{5}{9} & = \dfrac{9}{2x+3}\\\\5(2x+3) & = 81\\\\10x+15 & = 81\\\\10x & = 66\\\\ \implies x & = 6.6\end{aligned}

Substitute the found value of x into the expression for DE:

\begin{aligned}\sf \overline{DE} & = 2x+3\\\implies \sf \overline{DE} & = 2(6.6)+3\\& = 13.2+3\\& =16.2\:\: \sf units\end{aligned}

5 0
2 years ago
Read 2 more answers
The prism is partially filled with 150 cubic centimeters of sand. What fraction of the prism is filled by the Sand
Marizza181 [45]
75 fihbfdkhbskdj bidsh  d9u dissregard that it had to be 20 characters sooooooooooo
6 0
3 years ago
The science club purchased tickets for a magic show. They paid $108 for 6 tickets in section A and 10 tickets in section B.
san4es73 [151]
Let x is the price for one ticket in section A and y for section B.
In first week they paid <span>$108 for 6 tickets in section A and 10 tickets in section B.
So,
6x + 10y = 108
And in t</span><span>he following week, they paid $104 for 4 tickets in section A and 12 tickets in section B.
So, 
4x + 12y = 104
12y = 104 -4x
y= (104 -4x) /12
now, put this value for y in first equation
6x +10(104 - 4x / 12) = 108
multiplying all terms with 12
72x +10(104 -4x) = 1296
72x + 1040 -40x = 1296
32x = 256
x = 8
So, price for one ticket in section A is $8.

</span>
6 0
3 years ago
How you get the answer and how you do it
ololo11 [35]

Answer:

E=(-1,3)  F= (3,3) G=(-2,-1) H=(4,-1)

the shape is a trapizode

7 0
3 years ago
Other questions:
  • Which transformation is a flipping of a plane about a fixed line? translation rotation reflection dilation
    12·2 answers
  • On Wednesday and Thursday
    5·1 answer
  • HELPPPP
    5·1 answer
  • Need help with question 5. Anything is appreciated :))
    9·2 answers
  • Kevin multiplied
    6·2 answers
  • All expressions equivalent to 35x+3​
    15·1 answer
  • I need a real answer.
    12·1 answer
  • Rewrite the equation in Ax+By=C form. Use integers for A, B, and C. y=1/5x-6
    11·2 answers
  • I would offer more points but i dont have anymore
    11·2 answers
  • Compare the calculations displayed in GeoGebra with the calculations you completed in parts A through D. Look in the Algebra mar
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!