Answer:
To Prove:
is equal to the sum of its Maclaurin series.
Step-by-step explanation:
If
, then
for all n. If d is any positive number and |x| ≤ d, then
So Taylor's Inequality, with a = 0 and M =
, says that
Notice that the same constant
works for every value of n.
But, since
,
We have ![lim_{n\to\infty} \dfrac{9e^d}{(n+1)!} |x|^{n + 1} =9e^d lim_{n\to\infty} \dfrac{|x|^{n + 1}}{(n+1)!} =0](https://tex.z-dn.net/?f=lim_%7Bn%5Cto%5Cinfty%7D%20%5Cdfrac%7B9e%5Ed%7D%7B%28n%2B1%29%21%7D%20%7Cx%7C%5E%7Bn%20%2B%201%7D%20%3D9e%5Ed%20lim_%7Bn%5Cto%5Cinfty%7D%20%5Cdfrac%7B%7Cx%7C%5E%7Bn%20%2B%201%7D%7D%7B%28n%2B1%29%21%7D%20%3D0)
It follows from the Squeeze Theorem that
and therefore
for all values of x.
![THEOREM\\If f(x)=T_n(x)+R_n(x), $where $T_n $is the nth degree Taylor Polynomial of f at a and $ lim_{n\to\infty} R_n(x)=0 \: for \: |x-a|](https://tex.z-dn.net/?f=THEOREM%5C%5CIf%20f%28x%29%3DT_n%28x%29%2BR_n%28x%29%2C%20%24where%20%24T_n%20%24is%20the%20nth%20degree%20Taylor%20Polynomial%20of%20f%20at%20a%20and%20%20%24%20lim_%7Bn%5Cto%5Cinfty%7D%20R_n%28x%29%3D0%20%5C%3A%20%20for%20%5C%3A%20%7Cx-a%7C%3CR%2C%20%24then%20f%20is%20equal%20to%20the%20sum%20of%20its%20Taylor%20series%20on%20%24%20%20%7Cx-a%7C%3CR)
By this theorem above,
is equal to the sum of its Maclaurin series, that is,
for all x.