(36 3/4" + 36 3/8" + 371/2" +z) /4 = 36 5/8"
This is the equation that you would get for the average. Now we just solve for z.
Following PEMDAS you have to mulitply the equation by 4 to get rid of the divide by 4 part.
4( (36 3/4" + 36 3/8" + 371/2" +z) /4 = 36 5/8)
Which does this
36 3/4" + 36 3/8" + 371/2" +z = 146 1/2"
Now you have to add and subtract to get "z" by itself.
36 3/4" + 36 3/8" + 371/2" = 110 5/8"
(110 5/8" + z = 146 1/2" ) -110 5/8"
z= 35 7/8", so the answer is b
Answer:
<u>Options B and D</u>
Step-by-step explanation:
6x² + x - 1 = 0
6x² + 3x - 2x - 1 = 0
3x(2x + 1) - 1(2x + 1) = 0
(3x - 1)(2x + 1)
x = 1/3 and -1/2
<u>Options B and D</u>
Answer:
x = 2 + sqrt(5) or x = 2 - sqrt(5)
Step-by-step explanation using the quadratic formula:
Solve for x over the real numbers:
7 (x^2 - 4 x - 1) = 0
Divide both sides by 7:
x^2 - 4 x - 1 = 0
Add 1 to both sides:
x^2 - 4 x = 1
Add 4 to both sides:
x^2 - 4 x + 4 = 5
Write the left hand side as a square:
(x - 2)^2 = 5
Take the square root of both sides:
x - 2 = sqrt(5) or x - 2 = -sqrt(5)
Add 2 to both sides:
x = 2 + sqrt(5) or x - 2 = -sqrt(5)
Add 2 to both sides:
Answer: x = 2 + sqrt(5) or x = 2 - sqrt(5)
The equation of this line is x = 7 and it's slope is undefined aswell.
Answer:
<h2>
<em>x</em><em>=</em><em>3</em></h2>
<em>Sol</em><em>ution</em><em>,</em>
<em>Theorem</em><em>:</em>
<em>The</em><em> </em><em>angle</em><em> </em><em>bisector</em><em> </em><em>theorem</em><em> </em><em>states </em><em>that</em><em> </em><em>if</em><em> </em><em>a</em><em> </em><em>ray </em><em>bisects</em><em> </em><em>an</em><em> </em><em>angle</em><em> </em><em>of</em><em> </em><em>a</em><em> </em><em>triangle,</em><em>then</em><em> </em><em>it</em><em> </em><em>divides</em><em> </em><em>the</em><em> </em><em>oppos</em><em>ite</em><em> </em><em>side</em><em> </em><em>into</em><em> </em><em>two </em><em>segments</em><em> </em><em>that</em><em> </em><em>are</em><em> </em><em>proportional</em><em> </em><em>to</em><em> </em><em>other</em><em> </em><em>two</em><em> </em><em>sides</em><em>.</em>
<em>By</em><em> </em><em>the</em><em> </em><em>theorem</em><em>,</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>