Answer:
The length of segment AC is two times the length of segment A'C'
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and this ratio is called the scale factor
Let
z ----> the scale factor
A'C' ----> the length of segment A'C'
AC ----> the length of segment AC
so
we have that
---> the dilation is a reduction, because the scale factor is less than 1 and greater than zero
substitute
therefore
The length of segment AC is two times the length of segment A'C'
C by AA- bc 180 degrees in a triangle
Answer:
(0, 1)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y + 5x = 1
5y - x = 5
<u>Step 2: Rewrite Systems</u>
y + 5x = 1
- Subtract 5x on both sides: y = 1 - 5x
<u>Step 3: Redefine Systems</u>
y = 1 - 5x
5y - x = 5
<u>Step 4: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitution in <em>y</em>: 5(1 - 5x) - x = 5
- Distribute 5: 5 - 25x - x = 5
- Combine like terms: 5 - 26x = 5
- Isolate <em>x</em> term: -26x = 0
- Isolate <em>x</em>: x = 0
<u>Step 5: Solve for </u><em><u>y</u></em>
- Define equation: 5y - x = 5
- Substitute in <em>x</em>: 5y - 0 = 5
- Subtract: 5y = 5
- Isolate <em>y</em>: y = 1
Answer:
I think that it might be two.
Step-by-step explanation: