Answer:
1296°F
Step-by-step explanation:
950+346=1296
Hope this helps! : )
Answer:
a)g: 3x + 4y = 10 b) a:x+y = 5 c) c: 3x + 4y = 10
h: 6x + 8y = 5 b:2x + 3y = 8 d: 6x + 8y = 5
Step-by-step explanation:
a) Has no solution
g: 3x + 4y = 10
h: 6x + 8y = 5
Above Equations gives you parallel lines refer attachment
b) has exactly one solution
a:x+y = 5
b:2x + 3y = 8
Above Equations gives you intersecting lines refer attachment
c) has infinitely many solutions
c: 3x + 4y = 10
d: 6x + 8y = 5
Above Equations gives you collinear lines refer attachment
i) if we add x + 2y = 1 to equation x + y = 5 to make an inconsistent system.
ii) if we add x + 2y = 3 to equation x + y = 5 to create infinitely system.
iii) if we add x + 4y = 1 to equation x + y = 5 to create infinitely system.
iv) if we add to x + y =5 equation x + y = 5 to change the unique solution you had to a different unique solution
3/8 because you find the common denominator
8: 8,16,24,32
2: 2,4,6,8
1/2=4/8
7/8-4/8
So the answer is 3/8
You can try to find the denominator and then change the denominator+numerator.
You have shared the situation (problem), except for the directions: What are you supposed to do here? I can only make a educated guesses. See below:
Note that if <span>ax^2+bx+5=0 then it appears that c = 5 (a rational number).
Note that for simplicity's sake, we need to assume that the "two distinct zeros" are real numbers, not imaginary or complex numbers. If this is the case, then the discriminant, b^2 - 4(a)(c), must be positive. Since c = 5,
b^2 - 4(a)(5) > 0, or b^2 - 20a > 0.
Note that if the quadratic has two distinct zeros, which we'll call "d" and "e," then
(x-d) and (x-e) are factors of ax^2 + bx + 5 = 0, and that because of this fact,
- b plus sqrt( b^2 - 20a )
d = ------------------------------------
2a
and
</span> - b minus sqrt( b^2 - 20a )
e = ------------------------------------
2a
Some (or perhaps all) of these facts may help us find the values of "a" and "b." Before going into that, however, I'm asking you to share the rest of the problem statement. What, specificallyi, were you asked to do here?
Hello,
the answer will be the last one
\
hope this help