Answer: 24, 24, 47
<u>Step-by-step explanation:</u>
In order to form a triangle, the sum of two sides must be GREATER than the third side for all combinations.
a + b > c & a + c > b & b + c > a
23 + 28 = 51 which is NOT greater than 55
15 + 30 = 45 which is NOT greater than 45
8 + 17 = 25 which is NOT greater than 25
24 + 24 > 47 & 24 + 47 > 24 & 24 + 24 > 27
all combinations are true so these side lengths can form a triangle
9514 1404 393
Answer:
4a. ∠V≅∠Y
4b. TU ≅ WX
5. No; no applicable postulate
6. see below
Step-by-step explanation:
<h3>4.</h3>
a. When you use the ASA postulate, you are claiming you have shown two angles and the side between them to be congruent. Here, you're given side TV and angle T are congruent to their counterparts, sides WY and angle W. The angle at the other end of segment TV is angle V. Its counterpart is the other end of segment WY from angle W. In order to use ASA, we must show ...
∠V≅∠Y
__
b. When you use the SAS postulate, you are claiming you have shown two sides and the angle between them are congruent. The angle T is between sides TV and TU. The angle congruent to that, ∠W, is between sides WY and WX. Then the missing congruence that must be shown is ...
TU ≅ WX
__
<h3>5.</h3>
The marked congruences are for two sides and a non-included angle. There is no SSA postulate for proving congruence. (In fact, there are two different possible triangles that have the given dimensions. This can be seen in the fact that the given angle is opposite the shortest of the given sides.)
"No, we cannot prove they are congruent because none of the five postulates or theorems can be used."
__
<h3>6.</h3>
The first statement/reason is always the list of "given" statements.
1. ∠A≅∠D, AC≅DC . . . . given
2. . . . . vertical angles are congruent
3. . . . . ASA postulate
4. . . . . CPCTC
Answer:
D
Step-by-step explanation:
x/(x²+3x+2) - 1/[(x+2)(x+1)]
x² + 3x + 2 = x² + 2x + x + 2
= x(x + 2) + (x + 2)
= (x + 2)(x + 1)
= x/[(x+2)(x+1)] - 1/[(x+2)(x+1)]
= (x-1)/[(x+2)(x+1)]
= (x-1)/(x²+3x+2)
Answer:
l ×b length ×breadth or h×b height ×breadth only this much or if you have other formula plz send me plz and what your name