<span>The quadrilateral ABCD have vertices at points A(-6,4), B(-6,6), C(-2,6) and D(-4,4).
</span>
<span>Translating 10 units down you get points A''(-6,-6), B''(-6,-4), C''(-2,-4) and D''(-4,-6).
</span>
Translaitng <span>8 units to the right you get points A'(2,-6), B'(2,-4), C'(6,-4) and D'(4,-6) that are exactly vertices of quadrilateral A'B'C'D'.
</span><span>
</span><span>Answer: correct choice is B.
</span>
aww,thank you ^^
i hope you're having a good day as well
The solution is undefined, the function is parallel. Also the two functions are lunar functions, mx+b=y.
M= slope
B=y-intercept (where it crosses the y-axis)
Answer:
(3, 3 )
Step-by-step explanation:
Given the 2 equations
3x - y = 6 → (1)
6x + y = 21 → (2)
Adding the 2 equations term by term will eliminate y, that is
(6x + 3x) + (y - y) = (21 + 6), that is
9x = 27 (divide both sides by 9 )
x = 3
Substitute x = 3 into either (1) or (2) and solve for y
Using (2), then
(6 × 3) + y = 21
18 + y = 21 ( subtract 18 from both sides )
y = 3
Solution is (3, 3 )
Answer:
2,5
Step-by-step explanation:
-2x-5=10
-5-2=7