9514 1404 393
Answer:
11
Step-by-step explanation:
The future value of the account is given by the formula ...
A = P(1 +r/12)^(12t) . . . . principal P invested at rate r for t years
Solving for t, we find ...
A/P = (1 +r/12)^(12t) . . . . . . . . . . . divide by P
log(A/P) = 12t·log(1 +r/12) . . . . . . take logs
Divide by the coefficient of t, then fill in the numbers.
t = log(A/P)/(12·log(1 +r/12)) = log(202800/93000)/(12·log(1 +.068/12))
t ≈ 11.497
It will take about 11 years for the account balance to reach the desired amount.
Answer:
The answer is -77
Step-by-step explanation:
Ok, so assuming by x2 you mean x squared, I will solve this. So basically when you have a function, f(-7) would mean that you would have to replace all the x's in the equation with -7. So let's write that out. that would be f(-7) = -7^2 + (-7*4). So now according to PEMDAS, you would solve the exponent first, and -7^2 is equal to -49, because when you solve it you would do -(7^2), which is -(49), which is then -49. So now you have f(-7)= -49+ (4*-7). Solving for (4*-7), you get -28. This leaves you with -49 + (-28), which is -49 - 28. Simplifying that, you get the answer, which is -77.
<span>Ans: I = P*r*t = 900*0.023*1.5 = $31.50
I hope this help</span>
Answer:
144.44 yards
Step-by-step explanation:
The formula to find circumference is: C = π · d
Since we already have most of the factors figured out, we just replace them with what we have.
C = 3.14 · 46 yrds
144.44 = 3.14 · 46