Answer:
1. When we reflect the shape I along X axis it will take the shape I in first quadrant, and then if we rotate the shape I by 90° clockwise, it will take the shape again in second quadrant . So we are not getting shape II. This Option is Incorrect.
2. Second Option is correct , because by reflecting the shape I across X axis and then by 90° counterclockwise rotation will take the Shape I in second quadrant ,where we are getting shape II.
3. a reflection of shape I across the y-axis followed by a 90° counterclockwise rotation about the origin takes the shape I in fourth Quadrant. →→ Incorrect option.
4. This option is correct, because after reflecting the shape through Y axis ,and then rotating the shape through an angle of 90° in clockwise direction takes it in second quadrant.
5. A reflection of shape I across the x-axis followed by a 180° rotation about the origin takes the shape I in third quadrant.→→Incorrect option
Answer:
The interquartile range is <em>50.</em>
Step-by-step explanation:
To find our answer we have to first <em>quartile 1</em> and <em>quartile 3</em> are equal too. When we look at the plot <em>quartile 1 </em>is equal to <em>20,</em> <em>quartile 3 </em>is equal to <em>70</em> because it is in between <em>60</em> and <em>80</em>. Now to find the interquartile range we will <em>subtract 70</em> from <em>20</em> and we get <em>50</em>. Therefore, <u><em>50</em></u><em> is our answer.</em>
<h2>♪Answer : </h2>
»f(x) = 9(9 + x)(10)
subtitute x = 2 for f(x).
»f(5) = 9(9 + 5)(10)
»f(5) = 9(14)(10)
»f(5) = 1,260✅