1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lubov Fominskaja [6]
3 years ago
6

7 t-shirts and a hat costs £67.00

Mathematics
1 answer:
frozen [14]3 years ago
7 0
£67.00 / 7= £9.57that’s how much cost the hat
£67.00-£9.57= £57.43
£57.43/7= £8.20 per T-shirt





You might be interested in
What is the porpose of 0 in earning $45
Nata [24]
Earning is positive so the purpose of 0 would be to have $0 or no money
4 0
3 years ago
How many times does 18 go into 12?
egoroff_w [7]
18 does not go into 12 ... if you do 18 divide by 12 you will find out its 0.6666666
3 0
4 years ago
Read 2 more answers
Find the length s of the arc that subtends a central angle of measure 3 rad in a circle of radius 5 cm
Olin [163]
Find the length of the area that sun a central abfel180:460 measure the area of your area with the green sun green and orange
3 0
2 years ago
A(t)=.892t^3-13.5t^2+22.3t+579 how to solve this
Minchanka [31]

Answer:

t = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) + 1125/223 or t = 1125/223 - (5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 (-3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or t = 1125/223 - (5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

Step-by-step explanation:

Solve for t over the real numbers:

0.892 t^3 - 13.5 t^2 + 22.3 t + 579 = 0

0.892 t^3 - 13.5 t^2 + 22.3 t + 579 = (223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579:

(223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579 = 0

Bring (223 t^3)/250 - (27 t^2)/2 + (223 t)/10 + 579 together using the common denominator 250:

1/250 (223 t^3 - 3375 t^2 + 5575 t + 144750) = 0

Multiply both sides by 250:

223 t^3 - 3375 t^2 + 5575 t + 144750 = 0

Eliminate the quadratic term by substituting x = t - 1125/223:

144750 + 5575 (x + 1125/223) - 3375 (x + 1125/223)^2 + 223 (x + 1125/223)^3 = 0

Expand out terms of the left hand side:

223 x^3 - (2553650 x)/223 + 5749244625/49729 = 0

Divide both sides by 223:

x^3 - (2553650 x)/49729 + 5749244625/11089567 = 0

Change coordinates by substituting x = y + λ/y, where λ is a constant value that will be determined later:

5749244625/11089567 - (2553650 (y + λ/y))/49729 + (y + λ/y)^3 = 0

Multiply both sides by y^3 and collect in terms of y:

y^6 + y^4 (3 λ - 2553650/49729) + (5749244625 y^3)/11089567 + y^2 (3 λ^2 - (2553650 λ)/49729) + λ^3 = 0

Substitute λ = 2553650/149187 and then z = y^3, yielding a quadratic equation in the variable z:

z^2 + (5749244625 z)/11089567 + 16652679340752125000/3320419398682203 = 0

Find the positive solution to the quadratic equation:

z = (125 (223 sqrt(3188516012553) - 413945613))/199612206

Substitute back for z = y^3:

y^3 = (125 (223 sqrt(3188516012553) - 413945613))/199612206

Taking cube roots gives (5 (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3)) times the third roots of unity:

y = (5 (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3)) or y = -(5 (-1/2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 3^(2/3)) or y = (5 (-1)^(2/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 2^(1/3) 3^(2/3))

Substitute each value of y into x = y + 2553650/(149187 y):

x = (5 ((223 sqrt(3188516012553) - 413945613)/2)^(1/3))/(223 3^(2/3)) - 510730/223 (-1)^(2/3) (2/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3) or x = 510730/223 ((-2)/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3) - (5 ((-1)/2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3))/(223 3^(2/3)) or x = (5 (-1)^(2/3) ((223 sqrt(3188516012553) - 413945613)/2)^(1/3))/(223 3^(2/3)) - 510730/223 (2/(3 (413945613 - 223 sqrt(3188516012553))))^(1/3)

Bring each solution to a common denominator and simplify:

x = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or x = -(5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 ((-3)/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or x = -(5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

Substitute back for t = x + 1125/223:

Answer: t = (5 ((446 sqrt(3188516012553) - 827891226)^(1/3) - 204292 (-1)^(2/3) (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) + 1125/223 or t = 1125/223 - (5 ((-2)^(1/3) (223 sqrt(3188516012553) - 413945613)^(1/3) - 204292 (-3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3)) or t = 1125/223 - (5 ((827891226 - 446 sqrt(3188516012553))^(1/3) + 204292 (3/(413945613 - 223 sqrt(3188516012553)))^(1/3)))/(223 6^(2/3))

6 0
4 years ago
Consider the following ordered data: 2 5 5 6 7 7 8 9 10 find Q3+1.5
Ksenya-84 [330]
You figure that your own >:(
6 0
3 years ago
Other questions:
  • An isosceles trapezoid is a trapezoid with congruent bases<br><br> True or false?
    12·1 answer
  • Answer the question given in the picture---
    7·1 answer
  • If you help me get this right i will give you brainly, and 5 stars!
    12·1 answer
  • How much paint would be needed to cover a sphere with a diameter of 3 centimeter
    6·1 answer
  • elisa is writing an algebraic experession for the phrase 5 less than a number. findher mistake and correct it.
    11·1 answer
  • Simplify: 2x² -1+4x2-5<br> x2 - 1<br> 6x2 +4<br> 6x2-6<br> x2 +9
    10·2 answers
  • Help ASAP Ill mark brainliest
    8·2 answers
  • A manager purchased a total of 25 short sleeved and long sleeved shirts. Each short sleeved shirt costs $15 and each long sleeve
    13·1 answer
  • Show work / explain it​
    15·1 answer
  • What is 10 times as much as 0.06.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!