Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
Answer:
The minimum number of words left to write is 215
Step-by-step explanation:
Let
w -----> the number of words left to write
we know that
The number of words left to write plus the words written so far must be greater than or equal to 500 words
Remember that the word "at least" means "greater than or equal to"

Solve for w
Subtract 285 both sides

The minimum number of words left to write is 215
We have
SinC/ c = Sin A / a
Sin 71/ 26 = Sin A / 27
Sin A = 27 Sin 71 / 26 = about .982
So°
Sin-1(.982) = A = 79. 08°
Then angle B = 180 - 71 - 79.08 = 29.92°
And b is given by
b/sin29.92 = 26/sin 71
b = 26sin29.92/sin71 = about 13.72
But A could also be an obtuse angle = 180 - 79.08 = 100.92°
So we have
B = 180 - 71 - 100.92 = 8.08°
And we have
b / sin 8.08 = 26/sin71
b = 26sin8.08/sin 71 = 3.865
Answer:
−
6
=
3
7
n
Step-by-step explanation:
Rewrite the equation as
3
7
n
=
−
6
.
3
7
n
=
−
6
Multiply both sides of the equation by
7
3
.
7
3
⋅
3
7
⋅
n
=
7
3
⋅
−
6
Simplify both sides of the equation.
Tap for more steps...
n
=
−
14