<h3>I'll teach you how to solve 5k^3-8-4k^2+5k^2-2+3k^3</h3>
-----------------------------------------------------------------------
5k^3-8-4k^2+5k^2-2+3k^3
Group like terms:
5k^3+3k^3-4k^2+5k^2-8-2
Add similar elements:
5k^3+3k^3+k^2-8-2
Add similar elements:
8k^3+k^2-8-2
Subtract the numbers:
8k^3+k^2-10
Your Answer Is 8k^3+k^2-10
Plz mark me as brainliest :)
I'm not sure I'm understanding the wording of the question, but if it's this:
Juice boxes come in a package with multiple juice boxes in each package. Three people bought 18, 36, and 45 juice boxes. What is the largest possible number of juice boxes per package?
Then the problem is just an involved way of asking what the greatest common factor of 18, 36, and 45 is, and the answer is 9, the difference between 36 and 45, which are both multiples of 9. Note that 18 is also a multiple of 9. One way to find the greatest common factor of three numbers is to factor all of them and find which prime factors they have in common.
Answer:
There are 5,586,853,480 different ways to select the jury.
Step-by-step explanation:
The order is not important.
For example, if we had sets of 2 elements
Tremaine and Tre'davious would be the same set as Tre'davious and Tremaine. So we use the combinations formula.
Combinations formula:
is the number of different combinations of x objects from a set of n elements, given by the following formula.

In how many different ways can a jury of 12 people be randomly selected from a group of 40 people?
Here we have
.
So

There are 5,586,853,480 different ways to select the jury.
Answer:2
Step-by-step explanation:
An hour is 60 minutes, divide 60 by 20(that equals 3), then multiply 3 by 3 to get the answer 9 pages.