1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
algol [13]
3 years ago
12

Ami and Dan are going to bake a cake. They need two and a half cups of flour. Ami has 5/4 cups of flour, and Dan has 4/3 cups of

flour. Do they have enough flour to bake the cake? *
Mathematics
1 answer:
Westkost [7]3 years ago
6 0

Answer:

They have enough.

2\frac{6}{12}

Step-by-step explanation:

\frac{4}{3}+ \frac{5}{4}

4 = 2 × 2

3 = 3 × 1

LCM of 4 and 3

= 2 × 2 × 3 × 1

= 12

4(\frac{4}{3})+ 3(\frac{5}{4})

\frac{16}{12}+ \frac{15}{12}

\frac{31}{12} =2\frac{7}{12}

2\frac{1}{2} =2\frac{6}{12}

2\frac{6}{12}

You might be interested in
2.7·6.2–9.3·1.2+6.2·9.3–1.2·2.7 not pemdas
antiseptic1488 [7]

<em></em>

<em>60</em>

<em>See steps</em>

<em>Step by Step Solution:</em>

<em>More Icon</em>

<em>Reformatting the input :</em>

<em>Changes made to your input should not affect the solution:</em>

<em />

<em>(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)</em>

<em />

<em>STEP</em>

<em>1</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>1</em>

<em>:</em>

<em>     27 62   93 12    62 93    12 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(——•——)</em>

<em>     10 10   10 10    10 10    10 10</em>

<em>STEP</em>

<em>2</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>2</em>

<em>:</em>

<em>     27 62   93 12    62 93    6 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(—•——)</em>

<em>     10 10   10 10    10 10    5 10</em>

<em>STEP</em>

<em>3</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>3</em>

<em>:</em>

<em>     27 62   93 12    62 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    10 10   25</em>

<em>STEP</em>

<em>4</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>4</em>

<em>:</em>

<em>     27 62   93 12    31 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    5  10   25</em>

<em>STEP</em>

<em>5</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>5</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>6</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>6</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>7</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>7</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>8</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>8</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>9</em>

<em>:</em>

<em>Calculating the Least Common Multiple</em>

<em> 9.1    Find the Least Common Multiple</em>

<em />

<em>      The left denominator is :       50 </em>

<em />

<em>      The right denominator is :       25 </em>

<em />

<em>        Number of times each prime factor</em>

<em>        appears in the factorization of:</em>

<em> Prime </em>

<em> Factor   Left </em>

<em> Denominator   Right </em>

<em> Denominator   L.C.M = Max </em>

<em> {Left,Right} </em>

<em>2 1 0 1</em>

<em>5 2 2 2</em>

<em> Product of all </em>

<em> Prime Factors  50 25 50</em>

<em />

<em>      Least Common Multiple:</em>

<em>      50 </em>

<em />

<em>Calculating Multipliers :</em>

<em> 9.2    Calculate multipliers for the two fractions</em>

<em />

<em />

<em>    Denote the Least Common Multiple by  L.C.M </em>

<em>    Denote the Left Multiplier by  Left_M </em>

<em>    Denote the Right Multiplier by  Right_M </em>

<em>    Denote the Left Deniminator by  L_Deno </em>

<em>    Denote the Right Multiplier by  R_Deno </em>

<em />

<em>   Left_M = L.C.M / L_Deno = 1</em>

<em />

<em>   Right_M = L.C.M / R_Deno = 2</em>

<em />

<em />

<em>Making Equivalent Fractions :</em>

<em> 9.3      Rewrite the two fractions into equivalent fractions</em>

<em />

<em>Two fractions are called equivalent if they have the same numeric value.</em>

<em />

<em>For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.</em>

<em />

<em>To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.</em>

<em />

<em>   L. Mult. • L. Num.      837</em>

<em>   ——————————————————  =   ———</em>

<em>         L.C.M             50 </em>

<em />

<em>   R. Mult. • R. Num.      279 • 2</em>

<em>   ——————————————————  =   ———————</em>

<em>         L.C.M               50   </em>

<em>Adding fractions that have a common denominator :</em>

<em> 9.4       Adding up the two equivalent fractions</em>

<em>Add the two equivalent fractions which now have a common denominator</em>

<em />

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 837 - (279 • 2)     279</em>

<em> ———————————————  =  ———</em>

<em>       50            50 </em>

<em>Equation at the end of step</em>

<em>9</em>

<em>:</em>

<em>   279    2883     81</em>

<em>  (——— +  ————) -  ——</em>

<em>   50      50      25</em>

<em>STEP</em>

<em>10</em>

<em>:</em>

<em>Adding fractions which have a common denominator</em>

<em> 10.1       Adding fractions which have a common denominator</em>

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 279 + 2883     1581</em>

<em> ——————————  =  ————</em>

<em>     50          25 </em>

<em>Equation at the end of step</em>

<em>10</em>

<em>:</em>

<em>  1581    81</em>

<em>  ———— -  ——</em>

<em> </em>  25     25

STEP

11

:

Adding fractions which have a common denominator

11.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1581 - (81)     60

———————————  =  ——

    25          1

Final result :

 60

7 0
3 years ago
About how far apart do aesha and Josh live​
Vesnalui [34]

Answer:

D. about 8.5 mi

Step-by-step explanation:

To go from Aesha to Josh, you go 6 units right and 6 units up.

Each unit is a mile, so you go 6 miles right and 6 miles up.

Think of each 6 mile distance as a leg of a right triangle, and the direct distance from one place to the other as the hypotenuse of the right triangle. Use the Pythagorean theorem to find the length of the hypotenuse.

a^2 + b^2 = c^2

The 6-mile legs are a and b. c is the hypotenuse.

(6 mi)^2 + (6 mi)^2 = c^2

c^2 = 36 mi^2 + 36 mi^2

c^2 = 72 mi^2

c = sqrt(72) mi

c = sqrt(36 * 2) mi

c = 6sqrt(2) mi

c = 6(1.4142) mi

c = 8.5 mi

8 0
4 years ago
Spencer Ward purchased a new riding mower for $1,989. He made a 15% down payment and financed the remainder. What amount did he
Ostrovityanka [42]
The amount of the down payment is
1,989×0.15=298.35

Amount financed is
1,989−298.35=1,690.65
4 0
3 years ago
Joey can walk at a rate of 3 meters per second. How long would it take him to walk 300 meters.
galina1969 [7]

Answer:

100s

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
In the equation 1/4 + 2/3, what would you change the size of the piece to so you can solve? *
katovenus [111]
To solve this, you need to have a common denominator for both terms. In order to get the equivalent fraction with the common denominator, you multiply each fraction by a version of 1. Here, it seems like our least common denominator (or LCD) is 12. Therefore, you multiply 1/4 by 3/3 and you multipy 2/3 by 4/4 to get 3/12 plus 8/12 = 11/12.
Hope this helps!
3 0
4 years ago
Other questions:
  • if you travel 90 miles in 1 3/4 hours which of the following is amount time it would take you to travel 360 miles
    15·1 answer
  • Ajax buys 20 shares of stock at 20$ per share. The shares increase in value by 20%. He then sells 10 shares. After the shares de
    13·2 answers
  • Determine which postulate or theorem can be used to prove that
    5·1 answer
  • Which is bigger 0.05 or 0.005
    10·2 answers
  • How do i find the area of the Susan b Anthony chin with a diameter of 10mm?
    14·2 answers
  • Anyone help me ‼️‍♀️
    11·1 answer
  • Find the point of intersection of the two lones y=3x+2 and y=2x-1
    14·1 answer
  • Suppose an airline announces that its earnings this year are lower than expected due to reduced ticket sales. The airline spokes
    15·1 answer
  • The order pairs (1, 2), (2, 5), (3, 10), (4, 17), and (5, 26) represent a function. What is a rule that could represent this fun
    9·1 answer
  • What is the correct answer NEED ANSWER ASAP​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!