Answer:
Explanation:
What are the different types of interactions in nature?he interaction among organisms within or between overlapping niches can be characterized into five types of relationships: competition, predation, commensalism, mutualism and parasitism.
Answer:
my prediction is maybe, d. a container of pond water with acid added to it.
Explanation:
because if you say the effects of acid rain on pond water, you can try that kind of experiment to find your product.
Answer is <span>c. penicillin </span>
Answer:
PFFT this might help? sorry if not mate
Explanation:
Cell cycle checkpoint controls play a major role in preventing the development of cancer [see Sherr, 1994, for a more detailed discussion]. Major checkpoints occur at the G1 to S phase transition and at the G2 to M phase transitions. Cancer is a genetic disease that arises from defects in growth-promoting oncogenes and growth-suppressing tumor suppressor genes. The p53 tumor suppressor protein plays a role in both the G1/S phase and G2/M phase checkpoints. The mechanism for this activity at the G1/S phase checkpoint is well understood, but its mechanism of action at the G2/M phase checkpoint remains to be elucidated. The p53 protein is thought to prevent chromosomal replication specifically during the cell cycle if DNA damage is present. In addition, p53 can induce a type of programmed cell death, or apoptosis, under certain circumstances. The general goal of p53 appears to be the prevention of cell propagation if mutations are present. The p53 protein acts as a transcription factor by binding to certain specific genes and regulating their expression. One of these, WAF1 or Cip1, is activated by p53 and is an essential downstream mediator of p53-dependent G1/S phase checkpoint control. The function of p53 can be suppressed by another gene, MDM2, which is overexpressed in certain tumorigenic mouse cells and binds to p53 protein, thus inhibiting its transcriptional activation function. Other cellular proteins have been found to bind to p53, but the significance of the associations is not completely understood in all cases. The large number of human cancers in which the p53 gene is altered makes this gene a good candidate for cancer screening approaches.
<span>Cells control cell division in order to maintain normal cell function. If something happens to the control of the cell division, the healthy cells will divide uncontrollably. These new cells are cancer cells. </span>
The mutations in three genes are responsible for development of cancers:
1. Mutation in proto-oncogenes. Proto-oncogenes normally signal cells to grow and differentiate. Proto-oncogenes can become oncogenes due to mutations which result in the uncontrollable division of the cells.
2. Mutation in tumor suppressor genes. In normal cells, tumor suppressor genes suppress genes essential for cell cycle and that way they prevent uncontrollable cell division. However, after a mutation in these genes, suppression is lost and the cell may progress to cancer.
3. Mutation in stability genes. In normal cells, they have no role either in cell death or growth, but they control mutation rate. Mutation in stability genes results in situation where all genes, including proto-oncogenes and tumor suppression genes, are more frequently mutated.