Answer:
The correct answer is B.) (4x - 7 + 5x + 5) and (9x + 12).
Answer:
the answer is R13492
Step-by-step explanation:
hope it helps
<em><u>The inequality can be used to find the interval of time taken by the object to reach the height greater than 300 feet above the ground is:</u></em>
![d = -16t^2 + 1000](https://tex.z-dn.net/?f=d%20%3D%20-16t%5E2%20%2B%201000)
<em><u>Solution:</u></em>
<em><u>The object falls, its distance, d, above the ground after t seconds, is given by the formula:</u></em>
![d = -16t^2 + 1000](https://tex.z-dn.net/?f=d%20%3D%20-16t%5E2%20%2B%201000)
To find the time interval in which the object is at a height greater than 300 ft
Frame a inequality,
![-16t^2 + 1000 > 300](https://tex.z-dn.net/?f=-16t%5E2%20%2B%201000%20%3E%20300)
Solve the inequality
Subtract 1000 from both sides
![-16t^2 + 1000 - 1000 > 300 - 1000\\\\-16t^2 > -700](https://tex.z-dn.net/?f=-16t%5E2%20%2B%201000%20-%201000%20%3E%20300%20-%201000%5C%5C%5C%5C-16t%5E2%20%3E%20-700)
![16t^2 < 700\\\\Divide\ both\ sides\ by\ 16\\\\t^2 < \frac{700}{16}\\\\Take\ square\ root\ on\ both\ sides\\\\t < \sqrt{\frac{700}{16}}\\\\t < \pm 6.61](https://tex.z-dn.net/?f=16t%5E2%20%3C%20700%5C%5C%5C%5CDivide%5C%20both%5C%20sides%5C%20by%5C%2016%5C%5C%5C%5Ct%5E2%20%3C%20%5Cfrac%7B700%7D%7B16%7D%5C%5C%5C%5CTake%5C%20square%5C%20root%5C%20on%5C%20both%5C%20sides%5C%5C%5C%5Ct%20%3C%20%5Csqrt%7B%5Cfrac%7B700%7D%7B16%7D%7D%5C%5C%5C%5Ct%20%3C%20%5Cpm%206.61)
Time cannot be negative
Therefore,
t < 6.61
And the inequality used is: ![-16t^2 + 1000>300](https://tex.z-dn.net/?f=-16t%5E2%20%2B%201000%3E300)