Answer:A) 8 miles
Step-by-step explanation:
8 miles
I made this graph for you- the red is the 80%, and the green is the leftover 20%.
Answer:
Rounding to nearest hundredths gives us r=0.06.
So r is about 6%.
Step-by-step explanation:
So we are given:

where


.


Divide both sides by 1600:

Simplify:

Take the 6th root of both sides:
![\sqrt[6]{\frac{23}{16}}=1+r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D%3D1%2Br)
Subtract 1 on both sides:
![\sqrt[6]{\frac{23}{16}}-1=r](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1%3Dr)
So the exact solution is ![r=\sqrt[6]{\frac{23}{16}}-1](https://tex.z-dn.net/?f=r%3D%5Csqrt%5B6%5D%7B%5Cfrac%7B23%7D%7B16%7D%7D-1)
Most likely we are asked to round to a certain place value.
I'm going to put my value for r into my calculator.
r=0.062350864
Rounding to nearest hundredths gives us r=0.06.
Answer;
C) The second arc should be centered at C.
Explanation;
Assuming the goal is to construct a line parallel to AB that passes through given point C.
-Draw a line through C and across AB at an angle creating D.
- With the compass width about half of DC, and center D, draw the first arc to cross both lines.
-Using the same compass width , draw the second arc with center C.
-Then set the compass width to the lower arc (the first arc)
- Move the compass to the second arc. Mark off an arc to make point E
-Draw a straight line through C and E
Thus the line CE will be parallel to line AB
Answer:
II and III
Step-by-step explanation:
From statement II in the question, it is true that the standard deviations of two different samples from the same population may be the same. The population standard deviation is a fixed value calculated from every individual in the population. A sample standard deviation is calculated from only some of the individuals in a population.
Also from statement III, it is true that statistical inferences can be used to draw conclusions about the populations based on sample data. The mean of a population does not necessarily depends on the particular sample chosen. Therefore statement I is false.