1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yan [13]
2 years ago
12

Trevor ran a race in 1 4/5 hours. He ran a total of 8 1/3 miles. How far did he run in one hour?

Mathematics
2 answers:
cricket20 [7]2 years ago
7 0
4.63. I think :((((((
gulaghasi [49]2 years ago
6 0

Answer:

4.63

Step-by-step explanation:

4/5 of an hour is 48 minutes

1 4/5 hour is 60 + 48

which is

108 minutes

he ran 8 1/3 miles in 108 minutes

so

(8 1/3 times 60 ) ÷ 108

which =

4.6296296296 miles in one hour

You might be interested in
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
3 years ago
What is the difference from point F at (2,-3) to point G at (9,-3)? Show all work.
LenaWriter [7]
A 7 units.  -3 is the same in each, so you just find the difference between 9 and 2
5 0
2 years ago
Find the sum of -2 + 3i and -1- 2i.
blondinia [14]

Answer:

-3+i

Step-by-step explanation:

Collect like terms

-2-1=-3

+3i-2i=i

-3+i

7 0
2 years ago
Lucy invested $770 in an account paying an interest rate of 3.2% compounded quarterly. Assuming no deposits or withdrawals are m
irakobra [83]

Answer:

$1930

Step-by-step explanation:

770 + 24.64 (48-1)

there are 4 quarters in a year so you do 48 terms instead of 12.

4 0
3 years ago
Pls solve quickly !!
Eva8 [605]

Answer:

Options A

Step-by-step explanation:

Properties of the graph given for the function 'g',

y-intercept of the function 'g' → y = -4

Minimum value of g(x) → y = -4 (Value of the function at the lowest point)

Roots of g(x) → x = -2, 2

At x = 4,

g(4) = 11

Another function is,

f(x) = -x² - 4x - 4

     = -(x² + 4x + 4)

     = -(x + 2)²

Properties of the function f(x) = -(x + 2)²,

y-intercept (at x = 0) of the function 'f',

y = -(x + 2)²

y = -4

Since, leading coefficient of the function is (-1) therefore, graph will open downwards and the maximum point will be its vertex.

Maximum value of the function 'f' = Value of the function at the vertex

Coordinates of vertex → (-2, 0)

Therefore, maximum value of 'f' = 0

Roots (at y = 0) of the function 'f' → x = -2

At x = 4,

f(4) = -(4 + 2)²

     = -36

Therefore, Options A will be the correct option.

5 0
2 years ago
Other questions:
  • Please help me with this problem! <br> y =<br><br> 37<br> 39<br> 51
    8·2 answers
  • Does 10 24 26 make a right triangle
    8·2 answers
  • 4x+y^2 over / 4x+5y =??? find the numerical value of x=3 and y=1 .
    6·1 answer
  • Graph the quadratic function f(x)=(x−4)(x+2).
    12·1 answer
  • The length of a rectangle is twice it’s width. If the area of the rectangle is 72ft ^2, find it’s perimeter
    6·1 answer
  • Express 17.16 as a mixed number in lowest terms
    8·2 answers
  • If you toss four fair coins, in how many ways can you obtain at least one head? Group of answer choicesA. 1/16B. 1/2C. 3/16D. 11
    14·1 answer
  • The missing credit score was?
    9·2 answers
  • How do I answer this?​
    15·1 answer
  • 1. Find the value of c and d if<br>9c+2d = 54<br>с+ 2d = 6<br>c = 6 and d = 8​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!