C(t) = $2t + $8
This tells us that the basic cost of the pizza is $8, with no toppings, and that each topping costs an additional $2.
To graph this, plot a dot at (0,$8). Now move y our pencil point 1 unit to the right and then 2 units up. Plot a dot at this new location. Now draw a straight line connection (0, $8) and this new location (which is (1, $10) ).
Answer: -8 and 9
Explanation: -8 x 9 = -72 and -8 + 9 = 1
Step-by-step explanation:
1.
(chain rule)
2 

The answer is C.
Because it is closest location relative to the sea!
Given:
The diameter of the right cylinder is 2x cm.
The total surface area is 96 cm cube.
The radius is calculated as,

The total surface area is,

Volume is,

Now, differentiate with respect to x,

Now,
![\begin{gathered} \frac{dV}{dx}=0 \\ 84-3\pi(x^2)=0 \\ x^2=\frac{16}{\pi} \\ x=\sqrt[]{\frac{16}{\pi}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7BdV%7D%7Bdx%7D%3D0%20%5C%5C%2084-3%5Cpi%28x%5E2%29%3D0%20%5C%5C%20x%5E2%3D%5Cfrac%7B16%7D%7B%5Cpi%7D%20%5C%5C%20x%3D%5Csqrt%5B%5D%7B%5Cfrac%7B16%7D%7B%5Cpi%7D%7D%20%5Cend%7Bgathered%7D)
Now, differentiate (1) with respect to x again,
![\begin{gathered} \frac{d^2V}{dx^2}=\frac{d}{dx}(84-3\pi(x^2)) \\ =-6\pi x \\ At\text{ x=}\sqrt[]{\frac{16}{\pi}} \\ \frac{d^2V}{dx^2}=-6\pi\sqrt[]{\frac{16}{\pi}}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7Bd%5E2V%7D%7Bdx%5E2%7D%3D%5Cfrac%7Bd%7D%7Bdx%7D%2884-3%5Cpi%28x%5E2%29%29%20%5C%5C%20%3D-6%5Cpi%20x%20%5C%5C%20At%5Ctext%7B%20x%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B16%7D%7B%5Cpi%7D%7D%20%5C%5C%20%5Cfrac%7Bd%5E2V%7D%7Bdx%5E2%7D%3D-6%5Cpi%5Csqrt%5B%5D%7B%5Cfrac%7B16%7D%7B%5Cpi%7D%7D%3C0%20%5C%5C%20%20%5Cend%7Bgathered%7D)
Since, the double derivative is negative.
![So,\text{ the volume is maximum at }\sqrt[]{\frac{16}{\pi}}](https://tex.z-dn.net/?f=So%2C%5Ctext%7B%20the%20volume%20is%20maximum%20at%20%7D%5Csqrt%5B%5D%7B%5Cfrac%7B16%7D%7B%5Cpi%7D%7D)
So, the volume becomes,
![\begin{gathered} V=\pi(x^2)h \\ V=\pi(\sqrt[]{\frac{16}{\pi}})^2h \\ V=\frac{16h}{\pi} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V%3D%5Cpi%28x%5E2%29h%20%5C%5C%20V%3D%5Cpi%28%5Csqrt%5B%5D%7B%5Cfrac%7B16%7D%7B%5Cpi%7D%7D%29%5E2h%20%5C%5C%20V%3D%5Cfrac%7B16h%7D%7B%5Cpi%7D%20%5Cend%7Bgathered%7D)
Answer: maximum volume of the cylinder is,