A^2b^2 + 3ab + 3ab + 3^2
= a^2b^2 + 6ab + 9
X=4 and x=6
I suppose this is the correct answer.
Step-by-step explanation:
![\sqrt{p} = \sqrt[r]{w - {as}^{2} }](https://tex.z-dn.net/?f=%20%5Csqrt%7Bp%7D%20%20%3D%20%20%5Csqrt%5Br%5D%7Bw%20-%20%20%7Bas%7D%5E%7B2%7D%20%7D%20)
Find raise each side of the expression to the power of r
That's
<h2>
![( \sqrt{p} )^{r} = (\sqrt[r]{w - {as}^{2} } ) ^{r}](https://tex.z-dn.net/?f=%28%20%5Csqrt%7Bp%7D%20%29%5E%7Br%7D%20%20%3D%20%20%28%5Csqrt%5Br%5D%7Bw%20-%20%20%7Bas%7D%5E%7B2%7D%20%7D%20%29%20%5E%7Br%7D%20)
</h2>
we have
<h2>

</h2>
Send w to the left of the equation
<h2>

</h2>
Divide both sides by - a
We have
<h2>

</h2>
Find the square root of both sides
We have the final answer as
<h2>

</h2>
Hope this helps you
Answer:
14 4/9 cans
Step-by-step explanation:
We need to add the cans used on Saturday and Sunday
10 7/9 + 3 4/6
We can simplify the fraction 4/6 by dividing the top and bottom by 2
10 7/9 + 3 2/3
To add, we need the fractions to have a common denominator of 9
10 7/9 + 3 2/3*3/3
10 7/9 + 3 6/9
Add the whole numbers 10 +3 = 13
Add the fractions 7/9 + 6/9 = 13/9
13/9 = 1 4/9
Move the whole part of the fraction to the whole numbers
13 + 1 + 4/9
14 4/9
80.98498747 is your answer