Answer:
m<N = 76°
Step-by-step explanation:
Given:
∆JKL and ∆MNL are isosceles ∆ (isosceles ∆ has 2 equal sides).
m<J = 64° (given)
Required:
m<N
SOLUTION:
m<K = m<J (base angles of an isosceles ∆ are equal)
m<K = 64° (Substitution)
m<K + m<J + m<JLK = 180° (sum of ∆)
64° + 64° + m<JLK = 180° (substitution)
128° + m<JLK = 180°
subtract 128 from each side
m<JLK = 180° - 128°
m<JLK = 52°
In isosceles ∆MNL, m<MLN and <M are base angles of the ∆. Therefore, they are of equal measure.
Thus:
m<MLN = m<JKL (vertical angles are congruent)
m<MLN = 52°
m<M = m<MLN (base angles of isosceles ∆MNL)
m<M = 52° (substitution)
m<N + m<M° + m<MLN = 180° (Sum of ∆)
m<N + 52° + 52° = 180° (Substitution)
m<N + 104° = 180°
subtract 104 from each side
m<N = 180° - 104°
m<N = 76°
Account balance is not proportional to the number of weeks.
Answer:
The answer is 4 hours and 49 minutes
Step-by-step explanation:
Answer:
(10a+5)²= 100 a( a+1) + 25
Step-by-step explanation:
<u><em>Explanation:-</em></u>
Given
(10a+5)²
By using (a+b)² = a² +2ab +b²
= (10a)²+ 2 × 10a× 5 + (5)²
= 100a² + 100a + 25
= 100 a( a+1) + 25
The answer is 81, i hope this helped