Answer:
1. 17.27 cm
2. 19.32 cm
3. 24.07°
4. 36.87°
Step-by-step explanation:
1. Determination of the value of x.
Angle θ = 46°
Adjacent = 12 cm
Hypothenus = x
Using cosine ratio, the value of x can be obtained as follow:
Cos θ = Adjacent /Hypothenus
Cos 46 = 12/x
Cross multiply
x × Cos 46 = 12
Divide both side by Cos 46
x = 12/Cos 46
x = 17.27 cm
2. Determination of the value of x.
Angle θ = 42°
Adjacent = x
Hypothenus = 26 cm
Using cosine ratio, the value of x can be obtained as follow:
Cos θ = Adjacent /Hypothenus
Cos 42 = x/26
Cross multiply
x = 26 × Cos 42
x = 19.32 cm
3. Determination of angle θ
Adjacent = 21 cm
Hypothenus = 23 cm
Angle θ =?
Using cosine ratio, the value of θ can be obtained as follow:
Cos θ = Adjacent /Hypothenus
Cos θ = 21/23
Take the inverse of Cos
θ = Cos¯¹(21/23)
θ = 24.07°
4. Determination of angle θ
Adjacent = 12 cm
Hypothenus = 15cm
Angle θ =?
Using cosine ratio, the value of θ can be obtained as follow:
Cos θ = Adjacent /Hypothenus
Cos θ = 12/15
Take the inverse of Cos
θ = Cos¯¹(12/15)
θ = 36.87°
The first three terms of sequence are 9 , 6 , 3
<em><u>Solution:</u></em>
Given the recursive function f(n) = f(n - 1) - 3
Where f(1) = 9
To find: First three terms of sequence
Substitute n = 2 , n = 3 and n = 4 in given recursive function
When n = 2
f(n) = f(n - 1) - 3
f(2) = f(2 - 1) - 3
f(2) = f(1) - 3
f(2) = 9 - 3 = 6
f(2) = 6
Thus second term is 6
When n = 3
f(3) = f( 3 - 1) - 3
f(3) = f(2) - 3
f(3) = 6 - 3 = 3
f(3) = 3
Thus the third term is 3
When n = 4
f(4) = f( 4 - 1) - 3
f(4) = f(3) - 3
f(4) = 3 - 3
f(4) = 0
Thus the fourth term is 0
Thus first three terms of sequence are 9 , 6 , 3