<h3>
Answer: A. 18*sqrt(3)</h3>
=============================================
Explanation:
We'll need the tangent rule
tan(angle) = opposite/adjacent
tan(R) = TH/HR
tan(30) = TH/54
sqrt(3)/3 = TH/54 ... use the unit circle
54*sqrt(3)/3 = TH .... multiply both sides by 54
(54/3)*sqrt(3) = TH
18*sqrt(3) = TH
TH = 18*sqrt(3) which points to <u>choice A</u> as the final answer
----------------------
An alternative method:
Triangle THR is a 30-60-90 triangle.
Let x be the measure of side TH. This side is opposite the smallest angle R = 30, so we consider this the short leg.
The hypotenuse is twice as long as x, so TR = 2x. This only applies to 30-60-90 triangles.
Now use the pythagorean theorem
a^2 + b^2 = c^2
(TH)^2 + (HR)^2 = (TR)^2
(x)^2 + (54)^2 = (2x)^2
x^2 + 2916 = 4x^2
2916 = 4x^2 - x^2
3x^2 = 2916
x^2 = 2916/3
x^2 = 972
x = sqrt(972)
x = sqrt(324*3)
x = sqrt(324)*sqrt(3)
x = 18*sqrt(3) which is the length of TH.
A slightly similar idea is to use the fact that if y is the long leg and x is the short leg, then y = x*sqrt(3). Plug in y = 54 and isolate x and you should get x = 18*sqrt(3). Again, this trick only works for 30-60-90 triangles.
Answer:
3
Step-by-step explanation:
12
9514 1404 393
Explanation:
We can find the slope by solving for y.
3x +2y +7 = 5x +3y +10
-2x -3 = y . . . . . . . . . . . . . add -5x-10-2y to both sides of the equation
In this form, the slope (m) is the coefficient of x, -2. Hence m = -2.
__
<em>Alternate solution</em>
A graph of the equation shows it has an x-intercept of -1.5 and a y-intercept of -3. The slope (m) is then "rise" divided by "run", or ...
m = rise/run = -3/1.5
m = -2
Answer:
C is the answer.
Step-by-step explanation: